Anisotropic shearlet transforms for L2(Rk)

被引:10
作者
Czaja, Wojciech [1 ]
King, Emily J. [1 ,2 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Tech Univ Berlin, Dept Math, D-10587 Berlin, Germany
关键词
Anisotropic dilations; metaplectic representation; multi-dimensional representations; shearlets; symplectic group; REPRODUCING GROUPS; SUBGROUPS;
D O I
10.1002/mana.201000035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a new anisotropic generalization of the continuous shearlet transformation. This is achieved by means of an explicit construction of a family of reproducing Lie subgroups of the symplectic group. We study the properties of this new family of anisotropic shearlet transformations. In particular, we provide an analog of the Calderon admissibility condition for anisotropic shearlet reproducing functions. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:903 / 916
页数:14
相关论文
共 39 条
[1]  
[Anonymous], 2005, Wavelets XI (San Diego, CA, 2005), SPIE Proc.
[2]  
[Anonymous], 2001, COLLECT MATH
[3]  
[Anonymous], 1992, CBMS-NSF Reg. Conf. Ser. in Appl. Math
[4]  
[Anonymous], 1995, Translation-invariant De-noising
[5]  
[Anonymous], STUDIES COMPUTATIONA
[6]  
[Anonymous], 1989, ANN MATH STUDIES
[7]   Minimally Supported Frequency Composite Dilation Wavelets [J].
Blanchard, Jeffrey D. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (06) :796-815
[8]   Tight Frames for Multiscale and Multidirectional Image Analysis [J].
Bosch, Edward H. ;
Castrodad, Alexey ;
Cooper, John S. ;
Czaja, Wojciech ;
Dobrosotskaya, Julia .
INDEPENDENT COMPONENT ANALYSES, COMPRESSIVE SAMPLING, WAVELETS, NEURAL NET, BIOSYSTEMS, AND NANOENGINEERING XI, 2013, 8750
[9]   New multiscale transforms, minimum total variation synthesis:: applications to edge-preserving image reconstruction [J].
Candès, EJ ;
Guo, F .
SIGNAL PROCESSING, 2002, 82 (11) :1519-1543
[10]   Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage [J].
Chambolle, A ;
DeVore, RA ;
Lee, NY ;
Lucier, BJ .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :319-335