n-Point Virasoro algebras and their modules of densities

被引:12
作者
Cox, Ben [1 ]
Guo, Xiangqian [2 ]
Lu, Rencai [3 ]
Zhao, Kaiming [4 ,5 ]
机构
[1] Coll Charleston, Dept Math, Charleston, SC 29424 USA
[2] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
[3] Soochow Univ, Dept Math, Suzhou 215006, Jiangsu, Peoples R China
[4] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
[5] Hebei Normal Teachers Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Hebei, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Virasoro algebras; modules of densities; automorphism groups; universal central extensions; Krichever-Novikov algebras; n-point algebras; Klein groups; KRICHEVER-NOVIKOV ALGEBRAS; CENTRAL EXTENSIONS; REPRESENTATIONS;
D O I
10.1142/S0219199713500478
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce and study n-point Virasoro algebras, (V) over tilde (a), which are natural generalizations of the classical Virasoro algebra and have as quotients multipoint genus zero Krichever-Novikov type algebras. We determine necessary and sufficient conditions for the latter two such Lie algebras to be isomorphic. Moreover we determine their automorphisms, their derivation algebras, their universal central extensions, and some other properties. The list of automorphism groups that occur is C-n, D-n, A(4), S-4 and A(5). We also construct a large class of modules which we call modules of densities, and determine necessary and sufficient conditions for them to be irreducible.
引用
收藏
页数:27
相关论文
共 33 条
[1]  
[Anonymous], ADV SERIES MATH PHYS
[2]   GENERALIZED AFFINE KAC-MOODY LIE-ALGEBRAS OVER LOCALIZATIONS OF THE POLYNOMIAL RING IN ONE VARIABLE [J].
BREMNER, M .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (01) :21-28
[3]   THE A-D-E CLASSIFICATION OF MINIMAL AND A1(1) CONFORMAL INVARIANT THEORIES [J].
CAPPELLI, A ;
ITZYKSON, C ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 113 (01) :1-26
[4]   DJKM ALGEBRAS I: THEIR UNIVERSAL CENTRAL EXTENSION [J].
Cox, Ben ;
Futorny, Vyacheslav .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (10) :3451-3460
[5]  
Feigin B. L., 1990, REPRESENTATION LIE G, V7, P465
[6]  
Frenkel E., 2001, MATH SURVEYS MONOGRA, V88
[7]   Fraction representations and highest-weight-like representations of the Virasoro algebra [J].
Guo, Xiangqian ;
Lu, Rencai ;
Zhao, Kaiming .
JOURNAL OF ALGEBRA, 2013, 387 :68-86
[8]  
JORDAN DA, 1986, J LOND MATH SOC, V33, P33
[9]   THE VIRASORO ALGEBRA [J].
KAPLANSKY, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 86 (01) :49-54
[10]  
Kazhdan D., 1991, INT MATH RES NOTICES, V2, P21, DOI [DOI 10.1155/S1073792891000041, 10.1155/S1073792891000041]