Global Hopf Bifurcation Analysis of a Nicholson's Blowflies Equation of Neutral Type

被引:10
作者
Li, Michael Y. [1 ]
Wang, Chuncheng [2 ]
Wei, Junjie [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
NFDEs; Nicholson's blowflies equation; Hopf bifurcations; FUNCTIONAL-DIFFERENTIAL EQUATIONS;
D O I
10.1007/s10884-014-9349-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate Hopf bifurcations in a delayed Nicholson's blowflies equation of neutral type, derived from the Gurtin-MacCamy model. A key parameter that determines the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived. Global extension of local Hopf branches is established by combining a global Hopf bifurcation theorem with a Bendixson criterion for higher dimensional ordinary differential equations. We show that a branch of slowly varying periodic solutions and a branch of fast oscillating periodic solutions coexist for all large delays.
引用
收藏
页码:165 / 179
页数:15
相关论文
共 25 条
[1]  
[Anonymous], 2012, Applications of centre manifold theory
[2]   Structured population models, conservation laws, and delay equations [J].
Bocharov, G ;
Hadeler, KP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 168 (01) :212-237
[3]   NORMAL FORMS FOR RETARDED FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH PARAMETERS AND APPLICATIONS TO HOPF-BIFURCATION [J].
FARIA, T ;
MAGALHAES, LT .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 122 (02) :181-200
[4]  
Gourley S.A., J DIFFER EQ IN PRESS
[5]   Equivariant Hopf bifurcation for neutral functional differential equations [J].
Guo, Shangjiang ;
Lamb, Jeroen S. W. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) :2031-2041
[6]   NICHOLSON BLOWFLIES REVISITED [J].
GURNEY, WSC ;
BLYTHE, SP ;
NISBET, RM .
NATURE, 1980, 287 (5777) :17-21
[7]  
GURTIN ME, 1974, ARCH RATION MECH AN, V54, P280
[8]  
Hale J.K., 1993, Introduction to Functional Differntial Equations
[9]   On perturbations of delay-differential equations with periodic orbits [J].
Hale, JK ;
Weedermann, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 197 (02) :219-246
[10]  
Jun Jie Wei, 2002, Acta Mathematica Sinica, V45, P93