Evidence that recurrent circuits are critical to the ventral stream's execution of core object recognition behavior

被引:267
作者
Kar, Kohitij [1 ,2 ,3 ]
Kubilius, Jonas [1 ,2 ,4 ]
Schmidt, Kailyn [1 ,2 ]
Issa, Elias B. [1 ,2 ,5 ]
DiCarlo, James J. [1 ,2 ,3 ]
机构
[1] MIT, McGovern Inst Brain Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Brain & Cognit Sci, E25-618, Cambridge, MA 02139 USA
[3] MIT, Ctr Brains Minds & Machines, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Katholieke Univ Leuven, Brain & Cognit, Leuven, Belgium
[5] Columbia Univ, Dept Neurosci, Zuckerman Mind Brain Behav Inst, New York, NY USA
关键词
CATEGORY REPRESENTATIONS; FEEDBACK CONNECTIONS; CORTEX; MONKEY; FEEDFORWARD; ATTENTION; RESPONSES; MODELS; SPEED; V1;
D O I
10.1038/s41593-019-0392-5
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Non-recurrent deep convolutional neural networks (CNNs) are currently the best at modeling core object recognition, a behavior that is supported by the densely recurrent primate ventral stream, culminating in the inferior temporal (IT) cortex. If recurrence is critical to this behavior, then primates should outperform feedforward-only deep CNNs for images that require additional recurrent processing beyond the feedforward IT response. Here we first used behavioral methods to discover hundreds of these 'challenge' images. Second, using large-scale electrophysiology, we observed that behaviorally sufficient object identity solutions emerged similar to 30 ms later in the IT cortex for challenge images compared with primate performance-matched 'control' images. Third, these behaviorally critical late-phase IT response patterns were poorly predicted by feedforward deep CNN activations. Notably, very-deep CNNs and shallower recurrent CNNs better predicted these late IT responses, suggesting that there is a functional equivalence between additional nonlinear transformations and recurrence. Beyond arguing that recurrent circuits are critical for rapid object identification, our results provide strong constraints for future recurrent model development.
引用
收藏
页码:974 / +
页数:16
相关论文
共 54 条
[41]  
Simonyan K, 2015, Arxiv, DOI arXiv:1409.1556
[42]   Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition [J].
Spoerer, Courtney J. ;
McClure, Patrick ;
Kriegeskorte, Nikolaus .
FRONTIERS IN PSYCHOLOGY, 2017, 8
[43]   Time to wave good-bye to phase scrambling: Creating controlled scrambled images using diffeomorphic transformations [J].
Stojanoski, Bobby ;
Cusack, Rhodri .
JOURNAL OF VISION, 2014, 14 (12)
[44]  
Szegedy C, 2017, AAAI CONF ARTIF INTE, P4278
[45]   Rethinking the Inception Architecture for Computer Vision [J].
Szegedy, Christian ;
Vanhoucke, Vincent ;
Ioffe, Sergey ;
Shlens, Jon ;
Wojna, Zbigniew .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2818-2826
[46]   Recurrent computations for visual pattern completion [J].
Tang, Hanlin ;
Schrimpf, Martin ;
Lotter, William ;
Moerman, Charlotte ;
Paredes, Ana ;
Caro, Josue Ortega ;
Hardesty, Walter ;
Cox, David ;
Kreiman, Gabriel .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (35) :8835-8840
[47]   Speed of processing in the human visual system [J].
Thorpe, S ;
Fize, D ;
Marlot, C .
NATURE, 1996, 381 (6582) :520-522
[48]   Top-down signal from prefrontal cortex in executive control of memory retrieval [J].
Tomita, H ;
Ohbayashi, M ;
Nakahara, K ;
Hasegawa, I ;
Miyashita, Y .
NATURE, 1999, 401 (6754) :699-703
[49]   NEURONAL PROCESSING - HOW FAST IS THE SPEED OF THOUGHT [J].
TOVEE, MJ .
CURRENT BIOLOGY, 1994, 4 (12) :1125-1127
[50]   Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex [J].
van Kerkoerle, Timo ;
Self, Matthew W. ;
Dagnino, Bruno ;
Gariel-Mathis, Marie-Alice ;
Poort, Jasper ;
van der Togt, Chris ;
Roelfsema, Pieter R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (40) :14332-14341