Anisotropic in-plane gradients of poly(acrylic acid) formed by electropolymerization with spatiotemporal control of the electrochemical potential

被引:33
作者
Wang, XJ
Bohn, PW
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
关键词
D O I
10.1021/ja0400436
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Laterally varying thickness gradients of poly(acrylic acid) (PAA) were formed by Zn(II)-catalyzed electropolymerization of acrylic acid (AA) in the presence of an in-plane electrochemical potential gradient applied to Au working electrodes. In the static potential gradient (SPG) approach, two ends of a Au working electrode were clamped at distinct potentials for the duration of the electropolymerization process, thereby generating a time-independent in-plane electrochemical potential gradient, V(x). A dynamic potential gradient (DPG) approach was also used, in which the two end potentials were varied in time, while maintaining a constant voltage offset, to generate an in-plane electrochemical potential gradient, V(x,t). Because the kinetics of heterogeneous electron transfer vary with the local overpotential, these two methods produce PAA films with laterally varying thickness gradients, although they exhibit different spatial characteristics. X-ray photoelectron spectroscopy (XPS) and surface plasmon resonance (SPR) imaging were used to characterize the PAA gradients, The in-plane thickness variations of PAA gradients formed by both SPG and DPG approaches agree with predictions of the Butler-Volmer equation at small absolute overpotentials, while at large (negative) overpotentials, mass transport dominates, and the thickness reaches a plateau value independent of local potential. DPG-produced PAA gradients are generally broader than SPG gradients with the same initial potential and comparable effective growth time, indicating that the DPG approach is more suitable for formation of thicker gradients.
引用
收藏
页码:6825 / 6832
页数:8
相关论文
共 73 条
[1]  
Arndt KF, 1999, ACTA POLYM, V50, P383, DOI 10.1002/(SICI)1521-4044(19991201)50:11/12<383::AID-APOL383>3.3.CO
[2]  
2-Q
[3]  
ARTHAWALE AA, 2001, J APPL POLYM SCI, V79, P1994
[4]   FORMATION OF MONOLAYER FILMS BY THE SPONTANEOUS ASSEMBLY OF ORGANIC THIOLS FROM SOLUTION ONTO GOLD [J].
BAIN, CD ;
TROUGHTON, EB ;
TAO, YT ;
EVALL, J ;
WHITESIDES, GM ;
NUZZO, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (01) :321-335
[5]   Direct chemical mapping of electrochemically generated spatial composition gradients on thin gold films with surface-enhanced Raman spectroscopy [J].
Balss, KM ;
Kuo, TC ;
Bohn, PW .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (04) :994-1000
[6]   Chemically selective force mapping of electrochemically generated two-component ω-substituted alkanethiol monolayer gradients by pulsed-force-mode atomic force microscopy [J].
Balss, KM ;
Fried, GA ;
Bohn, PW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :C450-C455
[7]   Active spatiotemporal control of electrochemical reactions by coupling to in-plane potential gradients [J].
Balss, KM ;
Coleman, BD ;
Lansford, CH ;
Haasch, RT ;
Bohn, PW .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (37) :8970-8978
[8]   Doubly temperature sensitive core-shell microgels [J].
Berndt, I ;
Richtering, W .
MACROMOLECULES, 2003, 36 (23) :8780-8785
[9]   Surface plasmon resonance imaging measurements of ultrathin organic films [J].
Brockman, JM ;
Nelson, BP ;
Corn, RM .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :41-63
[10]   A remote query magnetoelastic pH sensor [J].
Cai, QY ;
Grimes, CA .
SENSORS AND ACTUATORS B-CHEMICAL, 2000, 71 (1-2) :112-117