Renormalization of flows on the multidimensional torus close to a KT frequency vector

被引:13
作者
Dias, JL [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
关键词
D O I
10.1088/0951-7715/15/3/307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a renormalization operator R acting on a space of vector fields on T-d, d greater than or equal to 2, to prove the existence of a submanifold of vector fields equivalent to constant. The result comes from the existence of a fixed point omega of R which is hyperbolic. This is done for a certain class KTd of frequency vectors omega is an element of R-d, called Koch type. The transformation R is constructed using a time rescaling, a linear change of basis plus a periodic non-linear map isotopic to the identity, which we derive by a 'homotopy trick'.
引用
收藏
页码:647 / 664
页数:18
相关论文
共 9 条
[1]  
[Anonymous], 1995, INTRO DIOPHANTINE AP
[2]  
Arnold VI., 1965, Trans. Am. Math. Soc. 2nd Ser, V46, P213, DOI [10.1007/BF00275153, 10.1090/trans2/046/11]
[3]   3 COUPLED OSCILLATORS - MODE-LOCKING, GLOBAL BIFURCATIONS AND TOROIDAL CHAOS [J].
BAESENS, C ;
GUCKENHEIMER, J ;
KIM, S ;
MACKAY, RS .
PHYSICA D, 1991, 49 (03) :387-475
[4]   Kam theory and a partial justification of Greene's criterion for nontwist maps [J].
Delshams, A ;
De la Llave, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (06) :1235-1269
[5]   Renormalization scheme for vector fields on T2 with a diophantine frequency [J].
Dias, JL .
NONLINEARITY, 2002, 15 (03) :665-679
[6]  
Katok A., 1995, INTRO MODERN THEORY, DOI 10.1017/CBO9780511809187
[7]   A renormalization group for Hamiltonians, with applications to KAM tori [J].
Koch, H .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 :475-521
[8]  
MacKay R. S., 1995, Dynamical Systems and Chaos, V2
[9]   ON ELLIPTIC LOWER DIMENSIONAL TORI IN HAMILTONIAN-SYSTEMS [J].
POSCHEL, J .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (04) :559-608