Strong and Δ-Convergence Results for Generalized Nonexpansive Mapping in Hyperbolic Space

被引:0
|
作者
Dashputre, Samir [1 ]
Padmavati, C. [2 ]
Sakure, Kavita [3 ]
机构
[1] Govt Coll, Dept Math, Balod, Chhattisgarh, India
[2] Govt VYT Autonomous PG Coll, Dept Math, Durg, Chhattisgarh, India
[3] Govt Digvijay Autonomous PG Coll, Dept Math, Rajnandgaon, Chhattisgarh, India
来源
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS | 2020年 / 11卷 / 03期
关键词
Hyperbolic space; Generalized nonexpansive mappings; Picard normal S-iteration process; Normal S-iteration process; FIXED-POINTS;
D O I
10.26713/cma.v11i3.1357
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a new iteration process which is faster than Picard Normal S-iteration process, Normal S-iteration process, Mann iteration process and Picard iteration process in hyperbolic space for generalized nonexpansive mapping. We also present strong and A-convergence results for proposed iteration process. An illustrative example with different set of parameters is also given in this paper.
引用
收藏
页码:389 / 401
页数:13
相关论文
共 50 条
  • [1] Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space
    Takahashi, Satoru
    Takahashi, Wataru
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (03) : 1025 - 1033
  • [2] The Convergence Theorem for a Square α-Nonexpansive Mapping in a Hyperbolic Space
    Bantaojai, Thanatporn
    Suanoom, Cholatis
    Khuangsatung, Wongvisarut
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (03): : 1597 - 1609
  • [3] Convergence of Generalized Quasi-Nonexpansive Mappings in Hyperbolic Space
    Saleem, Naeem
    Rashid, Maliha
    Jarad, Fahd
    Kalsoom, Amna
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [4] CONVERGENCE RESULTS FOR GENERALIZED NONEXPANSIVE MULTIVALUED MAPPING IN HYPERBOLIC SPACES VIA SP ITERATION PROCESS
    Kim, J. K.
    Dashputre, Samir
    Padamavati
    Sakure, Kavita
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (04) : 839 - 854
  • [5] Weak and Strong Convergence Theorems for an alpha-Nonexpansive Mapping and a Generalized Nonexpansive Mapping in Hilbert Spaces
    Wattanawitoon, Kriengsak
    Khamlae, Yaowalux
    THAI JOURNAL OF MATHEMATICS, 2013, 11 (03): : 633 - 643
  • [6] Strong Convergence Theorems for Nonexpansive Mapping
    Yongfu Su
    Xiaolong Qin
    Journal of Systems Science and Complexity, 2007, 20 : 85 - 94
  • [7] Strong convergence theorems for nonexpansive mapping
    Su, Yongfu
    Qin, Xiaolong
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2007, 20 (01) : 85 - 94
  • [8] The Convergence Results for an AK-Generalized Nonexpansive Mapping in Hilbert Spaces
    Suanoom, Cholatis
    Khuangsatung, Wongvisarut
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (02): : 623 - 634
  • [9] A Strong convergence theorem for the equilibrium problem and a relatively nonexpansive mapping in a Banach space
    Yang Xue
    Su Yong-Fu
    ICIC 2009: SECOND INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTING SCIENCE, VOL 3, PROCEEDINGS: APPLIED MATHEMATICS, SYSTEM MODELLING AND CONTROL, 2009, : 321 - 324
  • [10] Strong Convergence on Iterative Methods of Cesaro Means for Nonexpansive Mapping in Banach Space
    Zhu, Zhichuan
    Chen, Rudong
    ABSTRACT AND APPLIED ANALYSIS, 2014,