Nested Machine Learning Facilitates Increased Sequence Content for Large-Scale Automated High Resolution Melt Genotyping

被引:31
作者
Fraley, Stephanie I. [1 ,3 ]
Athamanolap, Pornpat [2 ]
Masek, Billie J. [3 ,4 ]
Hardick, Justin [3 ,4 ]
Carroll, Karen C. [5 ]
Hsieh, Yu-Hsiang [3 ]
Rothman, Richard E. [3 ]
Gaydos, Charlotte A. [4 ]
Wang, Tza-Huei [2 ,6 ]
Yang, Samuel [3 ,7 ]
机构
[1] Univ Calif San Diego, Bioengn, La Jolla, CA 92093 USA
[2] Johns Hopkins Univ, Biomed Engn, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Emergency Med, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Infect Dis, Med, Baltimore, MD 21218 USA
[5] Johns Hopkins Univ, Med Microbiol, Pathol, Baltimore, MD 21218 USA
[6] Johns Hopkins Univ, Mech Engn, Baltimore, MD 21218 USA
[7] Stanford Univ, Emergency Med, Stanford, CA 94305 USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
美国国家科学基金会;
关键词
RAPID IDENTIFICATION; BACTERIAL PATHOGENS; GENERATION; ASSAY;
D O I
10.1038/srep19218
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High Resolution Melt (HRM) is a versatile and rapid post-PCR DNA analysis technique primarily used to differentiate sequence variants among only a few short amplicons. We recently developed a one-vs-one support vector machine algorithm (OVO SVM) that enables the use of HRM for identifying numerous short amplicon sequences automatically and reliably. Herein, we set out to maximize the discriminating power of HRM + SVM for a single genetic locus by testing longer amplicons harboring significantly more sequence information. Using universal primers that amplify the hypervariable bacterial 16 S rRNA gene as a model system, we found that long amplicons yield more complex HRM curve shapes. We developed a novel nested OVO SVM approach to take advantage of this feature and achieved 100% accuracy in the identification of 37 clinically relevant bacteria in Leave-One-Out-Cross-Validation. A subset of organisms were independently tested. Those from pure culture were identified with high accuracy, while those tested directly from clinical blood bottles displayed more technical variability and reduced accuracy. Our findings demonstrate that long sequences can be accurately and automatically profiled by HRM with a novel nested SVM approach and suggest that clinical sample testing is feasible with further optimization.
引用
收藏
页数:10
相关论文
共 28 条
[1]   Trainable High Resolution Melt Curve Machine Learning Classifier for Large-Scale Reliable Genotyping of Sequence Variants [J].
Athamanolap, Pornpat ;
Parekh, Vishwa ;
Fraley, Stephanie I. ;
Agarwal, Vatsal ;
Shin, Dong J. ;
Jacobs, Michael A. ;
Wang, Tza-Huei ;
Yang, Samuel .
PLOS ONE, 2014, 9 (10)
[2]   A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria [J].
Chakravorty, Soumitesh ;
Helb, Danica ;
Burday, Michele ;
Connell, Nancy ;
Alland, David .
JOURNAL OF MICROBIOLOGICAL METHODS, 2007, 69 (02) :330-339
[3]  
Chin CS, 2013, NAT METHODS, V10, P563, DOI [10.1038/nmeth.2474, 10.1038/NMETH.2474]
[4]   Impact of Mutation Type and Amplicon Characteristics on Genetic Diversity Measures Generated Using a High-Resolution Melting Diversity Assay [J].
Cousins, Matthew M. ;
Donnell, Deborah ;
Eshleman, Susan H. .
JOURNAL OF MOLECULAR DIAGNOSTICS, 2013, 15 (01) :130-137
[5]   Use of High-Resolution Melting and Melting Temperature-shift assays for specific detection and identification of Bacillus anthracis based on single nucleotide discrimination [J].
Derzelle, Sylviane ;
Mendy, Christiane ;
Laroche, Severine ;
Madani, Nora .
JOURNAL OF MICROBIOLOGICAL METHODS, 2011, 87 (02) :195-201
[6]   uMELT: prediction of high-resolution melting curves and dynamic melting profiles of PCR products in a rich web application [J].
Dwight, Zachary ;
Palais, Robert ;
Wittwer, Carl T. .
BIOINFORMATICS, 2011, 27 (07) :1019-1020
[7]  
Erali Maria, 2008, V429, P199, DOI 10.1007/978-1-60327-040-3_14
[8]   Universal digital high-resolution melt: a novel approach to broad-based profiling of heterogeneous biological samples [J].
Fraley, Stephanie I. ;
Hardick, Justin ;
Masek, Billie Jo ;
Athamanolap, Pornpat ;
Rothman, Richard E. ;
Gaydos, Charlotte A. ;
Carroll, Karen C. ;
Wakefield, Teresa ;
Wang, Tza-Huei ;
Yang, Samuel .
NUCLEIC ACIDS RESEARCH, 2013, 41 (18) :e175
[9]   A novel method for simultaneous Enterococcus species identification/typing and van genotyping by high resolution melt analysis [J].
Gurtler, Volker ;
Grando, Danilla ;
Mayall, Barrie C. ;
Wang, Jenny ;
Ghaly-Derias, Shahbano .
JOURNAL OF MICROBIOLOGICAL METHODS, 2012, 90 (03) :167-181
[10]  
Hall T.A., 1999, IOC world bird list (version 11.1), DOI [10.1021/bk-1999-0734.ch008, DOI 10.14344/IOC.ML.11.1, DOI 10.1021/BK-1999-0734.CH008]