Generalized Fuzzy c-Means Clustering and its Property of Fuzzy Classification Function

被引:9
|
作者
Kanzawa, Yuchi [1 ]
Miyamoto, Sadaaki [2 ]
机构
[1] Shibaura Inst Technol, Koto Ku, 3-7-5 Toyosu, Tokyo 1358548, Japan
[2] Univ Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
关键词
fuzzy c-means clustering; fuzzy classification function; MAXIMIZING MODEL; ALGORITHMS;
D O I
10.20965/jaciii.2021.p0073
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study shows that a generalized fuzzy c-means (gFCM) clustering algorithm, which covers both standard and exponential fuzzy c-means clustering, can be constructed if a given fuzzified function, its derivative, and its inverse derivative can be calculated. Furthermore, our results show that the fuzzy classification function for gFCM exhibits a behavior similar to that of both standard and exponential fuzzy c-means clustering.
引用
收藏
页码:73 / 82
页数:10
相关论文
共 50 条
  • [31] DETERMINISTIC AND SIMULATED ANNEALING APPROACH TO FUZZY C-MEANS CLUSTERING
    Yasuda, Makoto
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (12B): : 4981 - 4991
  • [32] Background Removal by Modified Fuzzy C-Means Clustering Algorithm
    Pugazhenthi, A.
    Sreenivasulu, G.
    Indhirani, A.
    2015 IEEE INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY (ICETECH), 2015, : 104 - 106
  • [33] Integrating fuzzy C-means clustering and fuzzy inference system for audiovisual quality of experience
    Boudjerida F.
    Akhtar Z.
    Lahoulou A.
    Chettibi S.
    International Journal of Information Technology, 2024, 16 (4) : 2549 - 2562
  • [34] A novel validity indice for fuzzy C-means clustering algorithm
    Li, Jing
    Qian, Xuezhong
    Journal of Computational Information Systems, 2013, 9 (23): : 9679 - 9688
  • [35] Fuzzy C-Means Clustering Algorithm with Multiple Fuzzification Coefficients
    Tran Dinh Khang
    Nguyen Duc Vuong
    Tran, Manh-Kien
    Fowler, Michael
    ALGORITHMS, 2020, 13 (07)
  • [36] Integrated Warehouse Layout Planning with Fuzzy C-Means Clustering
    Kucukdeniz, Tarik
    Sönmez, Özlen Erkal
    INTELLIGENT AND FUZZY SYSTEMS: DIGITAL ACCELERATION AND THE NEW NORMAL, INFUS 2022, VOL 1, 2022, 504 : 184 - 191
  • [37] Model order reduction using Fuzzy C-Means clustering
    Narain, Anirudha
    Chandra, Dinesh
    Singh, Ravindra K.
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2014, 36 (08) : 992 - 998
  • [38] Indoor Fingerprint Localization Based on Fuzzy C-means Clustering
    Zhou, Hao
    Nguyen Ngoc Van
    2014 SIXTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA), 2014, : 337 - 340
  • [39] Fuzzy C-means clustering algorithm with multiple fuzzification coefficients
    Khang T.D.
    Vuong N.D.
    Tran M.-K.
    Fowler M.
    Algorithms, 2020, 13 (13)
  • [40] An Evolutionary Neuro-Fuzzy C-means Clustering Technique
    Pantula, Priyanka D.
    Miriyala, Srinivas S.
    Mitra, Kishalay
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 89 (89)