Generalized Fuzzy c-Means Clustering and its Property of Fuzzy Classification Function

被引:9
|
作者
Kanzawa, Yuchi [1 ]
Miyamoto, Sadaaki [2 ]
机构
[1] Shibaura Inst Technol, Koto Ku, 3-7-5 Toyosu, Tokyo 1358548, Japan
[2] Univ Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
关键词
fuzzy c-means clustering; fuzzy classification function; MAXIMIZING MODEL; ALGORITHMS;
D O I
10.20965/jaciii.2021.p0073
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study shows that a generalized fuzzy c-means (gFCM) clustering algorithm, which covers both standard and exponential fuzzy c-means clustering, can be constructed if a given fuzzified function, its derivative, and its inverse derivative can be calculated. Furthermore, our results show that the fuzzy classification function for gFCM exhibits a behavior similar to that of both standard and exponential fuzzy c-means clustering.
引用
收藏
页码:73 / 82
页数:10
相关论文
共 50 条
  • [21] Sparse Fuzzy C-Means Clustering with Lasso Penalty
    Parveen, Shazia
    Yang, Miin-Shen
    SYMMETRY-BASEL, 2024, 16 (09):
  • [22] Online Classifiers Based on Fuzzy C-means Clustering
    Jedrzejowicz, Joanna
    Jedrzejowicz, Piotr
    COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, 2013, 8083 : 427 - 436
  • [23] Fuzzy c-means clustering with prior biological knowledge
    Tari, Luis
    Baral, Chitta
    Kim, Seungchan
    JOURNAL OF BIOMEDICAL INFORMATICS, 2009, 42 (01) : 74 - 81
  • [24] Histogram-based fuzzy clustering and its comparison to Fuzzy c-Means Clustering in one-dimensional data
    Chong, A
    Gedeon, TD
    Wong, KW
    HYBRID INFORMATION SYSTEMS, 2002, : 253 - 267
  • [25] Meat image segmentation using fuzzy local information c-means clustering for generalized or mixed kernel function
    College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
    不详
    不详
    不详
    Mod. Food Sci. Technol., 7 (130-136): : 130 - 136
  • [26] A new biplot procedure with joint classification of objects and variables by fuzzy c-means clustering
    Yamashita, Naoto
    Mayekawa, Shin-ichi
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2015, 9 (03) : 243 - 266
  • [27] Fuzzy prediction of power lithium ion battery State of Function based on the fuzzy c-means clustering algorithm
    Wang D.
    Yang F.
    Gan L.
    Li Y.
    World Electric Vehicle Journal, 2019, 10 (01):
  • [28] Suspended Sediment Modeling Using Neuro-Fuzzy Embedded Fuzzy c-Means Clustering Technique
    Kisi, Ozgur
    Zounemat-Kermani, Mohammad
    WATER RESOURCES MANAGEMENT, 2016, 30 (11) : 3979 - 3994
  • [29] Fuzzy C-means plus plus : Fuzzy C-means with effective seeding initialization
    Stetco, Adrian
    Zeng, Xiao-Jun
    Keane, John
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (21) : 7541 - 7548
  • [30] Geometrically guided Fuzzy C-Means clustering of multispectral images
    Noordam, JC
    van der Broek, WHAM
    Buydens, LMC
    MULTISPECTRAL AND HYPERSPECTRAL IMAGE ACQUISITION AND PROCESSING, 2001, 4548 : 161 - 166