Generalized Fuzzy c-Means Clustering and its Property of Fuzzy Classification Function

被引:9
|
作者
Kanzawa, Yuchi [1 ]
Miyamoto, Sadaaki [2 ]
机构
[1] Shibaura Inst Technol, Koto Ku, 3-7-5 Toyosu, Tokyo 1358548, Japan
[2] Univ Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
关键词
fuzzy c-means clustering; fuzzy classification function; MAXIMIZING MODEL; ALGORITHMS;
D O I
10.20965/jaciii.2021.p0073
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study shows that a generalized fuzzy c-means (gFCM) clustering algorithm, which covers both standard and exponential fuzzy c-means clustering, can be constructed if a given fuzzified function, its derivative, and its inverse derivative can be calculated. Furthermore, our results show that the fuzzy classification function for gFCM exhibits a behavior similar to that of both standard and exponential fuzzy c-means clustering.
引用
收藏
页码:73 / 82
页数:10
相关论文
共 50 条
  • [1] Generalized Fuzzy c-Means Clustering and Its Theoretical Properties
    Kanzawa, Yuchi
    Miyamoto, Sadaaki
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2018), 2018, 11144 : 243 - 254
  • [2] On Tolerant Fuzzy c-Means Clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2009, 13 (04) : 421 - 428
  • [3] Generalization Property of Fuzzy Classification Function for Tsallis Entropy-Regularization of Bezdek-Type Fuzzy C-Means Clustering
    Kanzawa, Yuchi
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2020), 2020, 12256 : 119 - 131
  • [4] Regularized Fuzzy c-Means Clustering and its Behavior at Point of Infinity
    Kanzawa, Yuchi
    Miyamoto, Sadaaki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2019, 23 (03) : 485 - 492
  • [5] Application of fuzzy ARTMAP and fuzzy c-means clustering to pattern classification with incomplete data
    Lim, C
    Kuan, M
    Harrison, R
    NEURAL COMPUTING & APPLICATIONS, 2005, 14 (02) : 104 - 113
  • [6] Fuzzy C-Means Clustering Using Asymmetric Loss Function
    Atiyah, Israa Abdzaid
    Mohammadpour, Adel
    Ahmadzadehgoli, Narges
    Taheri, S. Mahmoud
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2020, 19 (01): : 91 - 101
  • [7] Fuzzy C-Means Clustering Using Asymmetric Loss Function
    Israa Abdzaid Atiyah
    Adel Mohammadpour
    Narges Ahmadzadehgoli
    S. Mahmoud Taheri
    Journal of Statistical Theory and Applications, 2020, 19 : 91 - 101
  • [8] A New Clustering Validity Function for the Fuzzy C-means Algorithm
    Wang, Jiesheng
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 2477 - 2480
  • [9] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    SOFT COMPUTING, 2010, 14 (05) : 487 - 494
  • [10] An Accelerated Fuzzy C-Means clustering algorithm
    Hershfinkel, D
    Dinstein, I
    APPLICATIONS OF FUZZY LOGIC TECHNOLOGY III, 1996, 2761 : 41 - 52