Some higher-order theory for a consistent non-parametric model specification test

被引:36
作者
Fan, YQ
Linton, O
机构
[1] Vanderbilt Univ, Dept Econ, VU Stn B 351819, London WC2A 2AE, England
[2] London Sch Econ, Dept Econ, London WC2A 2AE, England
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
consistent test; Edgeworth expansion; kernel estimation; non-linear regression;
D O I
10.1016/S0378-3758(02)00307-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide higher-order approximations for a smoothing-based model specification test. We derive the asymptotic cumulants and give the formal Edgeworth distributional approximation valid to a third order. We also prove the validity of the expansion in a special case where the error in the Edgeworth expansion is of order n(-epsilon2) for some 0 < epsilon(2) < 1/3. The proof is based on new results for degenerate weighted U-statistics. There is a trade-off between size distortion and local power, so that large bandwidths are good for power and bad for size distortion, and vice-versa. One finding of practical importance is that this trade-off is not affected by the dimensionality of the regressors. This is because there are no smoothing bias terms under the null hypothesis and one can simply take larger bandwidth when dimensions are large. We provide an application to computing size-corrected critical values whose null rejection frequency improves on the normal critical values. Our simulations confirm the efficacy of this method in moderate sized samples. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:125 / 154
页数:30
相关论文
共 43 条
[1]   A conditional Kolmogorov test [J].
Andrews, DWK .
ECONOMETRICA, 1997, 65 (05) :1097-1128
[2]   VALIDITY OF FORMAL EDGEWORTH EXPANSION [J].
BHATTACHARYA, RN ;
GHOSH, JK .
ANNALS OF STATISTICS, 1978, 6 (02) :434-451
[3]  
Bhattacharya RN., 1976, NORMAL APPROXIMATION
[4]   THE EDGEWORTH EXPANSION FOR U-STATISTICS OF DEGREE-2 [J].
BICKEL, PJ ;
GOTZE, F ;
VANZWET, WR .
ANNALS OF STATISTICS, 1986, 14 (04) :1463-1484
[5]   CONSISTENT MODEL-SPECIFICATION TESTS [J].
BIERENS, HJ .
JOURNAL OF ECONOMETRICS, 1982, 20 (01) :105-134
[6]   Asymptotic theory of integrated conditional moment tests [J].
Bierens, HJ ;
Ploberger, W .
ECONOMETRICA, 1997, 65 (05) :1129-1151
[7]   A CONSISTENT CONDITIONAL MOMENT TEST OF FUNCTIONAL FORM [J].
BIERENS, HJ .
ECONOMETRICA, 1990, 58 (06) :1443-1458
[8]   AN EDGEWORTH EXPANSION FOR U-STATISTICS [J].
CALLAERT, H ;
JANSSEN, P ;
VERAVERBEKE, N .
ANNALS OF STATISTICS, 1980, 8 (02) :299-312
[9]   ASYMPTOTIC COMPARISON OF CRAMER-VONMISES AND NONPARAMETRIC FUNCTION ESTIMATION TECHNIQUES FOR TESTING GOODNESS-OF-FIT [J].
EUBANK, RL ;
LARICCIA, VN .
ANNALS OF STATISTICS, 1992, 20 (04) :2071-2086
[10]  
Fan W., 1995, ECONOMET REV, V14, P367, DOI DOI 10.1080/07474939508800326