Comb-shaped electrode-based triboelectric nanogenerators for bi-directional mechanical energy harvesting

被引:10
|
作者
Yoo, Donghyeon [1 ]
Choi, Dongwhi [1 ]
Kim, Dong Sung [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mech Engn, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Triboelectric nanogenerator; Bi-directional mechanical energy harvesting; Comb-shaped electrode; Thermal nanoimprinting; SHOE INSOLE; TRANSPARENT; WATER;
D O I
10.1016/j.mee.2017.01.003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Triboelectric nanogenerators (TENGs), which utilize coupling of contact electrification and electric induction to effectively harvest the mechanical energy around us, have attracted much attention due to their advantages such as simple design and high accessibility. Herein, we report new types of TENGs containing comb-shaped electrode, which are fabricated with a simple thermal nanoimprinting process where a commercially-available metal mesh was used as a stamp to simply impart microtopography on the TENGs to increase electrical output performance. The fabricated TENG with the comb-shaped electrode enables to harvest bi-directional mechanical energy (including both lateral and vertical contact/separation), which can be a new strategy to efficiently harvest the energy from complex real mechanical motions. The TENG with the comb-shaped electrode generates a short circuit current (I-SC) of 85 nA and an open circuit voltage (V-OC) of 6.4 V under the lateral contact/separation, which are increased up to 850% and 1600%, respectively, compared to the TENGs with the conventional rectangular electrode. The TENG with comb-shaped electrode is also found to harvest energy of I-SC of 339 nA and V-OC, of 31 Vat a pressing frequency of 0.5 Hz and force of 58.8 N under the vertical contact/separation without significant loss of electrical output performance compared with the TENG with the conventional rectangular electrode. The results indicate that the comb-shaped electrode would be a powerful (potential) candidate of electrode shape of the TENG to harvest the energy from real mechanical motions. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 51
页数:6
相关论文
共 50 条
  • [21] Hybrid Energy-Harvesting Systems Based on Triboelectric Nanogenerators
    Pang, Yaokun
    Cao, Yunteng
    Derakhshani, Masoud
    Fang, Yuhui
    Wang, Zhong Lin
    Cao, Changyong
    MATTER, 2021, 4 (01) : 116 - 143
  • [22] Recent advances in ocean energy harvesting based on triboelectric nanogenerators
    Song, Changhui
    Zhu, Xiao
    Wang, Maoli
    Yang, Ping
    Chen, Linke
    Hong, Le
    Cui, Weicheng
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 53
  • [23] Energy Harvesting Using Wastepaper-Based Triboelectric Nanogenerators
    Zhang, Renyun
    Hummelgard, Magnus
    Ortegren, Jonas
    Andersson, Henrik
    Olsen, Martin
    Chen, Wenshuai
    Wang, Peihong
    Dahlstrom, Christina
    Eivazi, Alireza
    Norgren, Magnus
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (11)
  • [24] PEO/cysteine composite nanofiber-based triboelectric nanogenerators for harvesting tiny mechanical energy
    Hao, Yijun
    Yang, Jiayi
    Zhu, Xiaopeng
    Hong, Keke
    Su, Jiayu
    Qin, Yong
    Su, Wei
    Zhang, Hongke
    Zhang, Chuguo
    Li, Xiuhan
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (03) : 1853 - 1862
  • [25] Fluid Oscillation-Driven Bi-Directional Air Turbine Triboelectric Nanogenerator for Ocean Wave Energy Harvesting
    Yang, Shaohui
    Zhang, Chengzhuo
    Du, Zhichang
    Tu, Yongqiang
    Dai, Xianggang
    Huang, Yan
    Fan, Jianyu
    Hong, Zhanyong
    Jiang, Tao
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2024, 14 (12)
  • [26] Phosphor-Based Triboelectric Nanogenerators for Mechanical Energy Harvesting and Self-Powered Systems
    Rakshita, Muddamalla
    Madathil, Navaneeth
    Sharma, Aachal A.
    Pradhan, Payal P.
    Kasireddi, A. K. Durga Prasad
    Khanapuram, Uday Kumar
    Rajaboina, Rakesh Kumar
    Divi, Haranath
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (03) : 1821 - 1828
  • [27] Comb-shaped single-electrode triboelectric roller chain with speed sensing and fault diagnosis capabilities
    Wang, Song
    Ma, Tenghao
    Feng, Jigang
    Gao, Shuai
    Han, Qinkai
    Chu, Fulei
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 224
  • [28] High performance of multi-layered triboelectric nanogenerators for mechanical energy harvesting
    Yar, Adem
    ENERGY, 2021, 222
  • [29] A Stretchable Solid Ionic Electrode-Based Triboelectric Nanogenerator for Biomechanical Energy Harvesting and Self-Powered Sensors
    Bo, Xiangkun
    Wang, Lingyun
    Zhao, Hong
    Almardi, Jasim M. M.
    Li, Weilu
    Daoud, Walid A. A.
    SMALL, 2023, 19 (38)
  • [30] Triboelectric Nanogenerators Based on Immobilized Living Microalgae for Biomechanical Energy Harvesting
    Hajra, Sugato
    In-na, Pichaya
    Janpum, Chalampol
    Panda, Swati
    Kim, Hoe Joon
    ELECTRONIC MATERIALS LETTERS, 2023, 19 (04) : 367 - 373