A molecular dynamics study of stiffness-dependent thermal conductivity of graphene

被引:5
作者
Huang, Jianzhang [1 ]
Qiang, Han [1 ]
机构
[1] South China Univ Technol, Sch Civil Engn & Transportat, Dept Engn Mech, Guangzhou 510604, Guangdong, Peoples R China
来源
MATERIALS RESEARCH EXPRESS | 2017年 / 4卷 / 03期
基金
中国国家自然科学基金;
关键词
thermal conductivity; support stiffness; non-equilibrium molecular dynamics; thermal management; SURFACE PHONON-DISPERSION; MONOLAYER GRAPHITE; INTERCALATION; NANORIBBONS; INTERFACE; NI(111); YB; CU;
D O I
10.1088/2053-1591/aa66a7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Non-equilibrium molecular dynamics (NEMD) simulations is used to investigate the effect of support stiffness on thermal conductivity property based on the 'graphene-springs' model. It shows that the support stiffness greatly influences the thermal conductivity. Thermal conductivity of graphene decreases nonlinearly as the support stiffness increases. The temperature stability of thermal conductivity property of graphene can be improved by the support stiffness. For patterned stiffness supported stripe, thermal conductivity is significantly dependent on the patterned area, angle and stripe distribution. The work in this paper reveals the possibility for designing and controlling of thermal conduction of graphene by using support stiffness, which is beneficial to the application of graphene in nanoscale devices.
引用
收藏
页数:9
相关论文
共 33 条
  • [1] BOND SOFTENING IN MONOLAYER GRAPHITE FORMED ON TRANSITION-METAL CARBIDE SURFACES
    AIZAWA, T
    SOUDA, R
    OTANI, S
    ISHIZAWA, Y
    OSHIMA, C
    [J]. PHYSICAL REVIEW B, 1990, 42 (18): : 11469 - 11478
  • [2] PHONON-DISPERSION OF MONOLAYER GRAPHITE ON PT(111) AND NBC SURFACES - BOND SOFTENING AND INTERFACE STRUCTURES
    AIZAWA, T
    HWANG, Y
    HAYAMI, W
    SOUDA, R
    OTANI, S
    ISHIZAWA, Y
    [J]. SURFACE SCIENCE, 1992, 260 (1-3) : 311 - 318
  • [3] Flexural mode of graphene on a substrate
    Amorim, Bruno
    Guinea, Francisco
    [J]. PHYSICAL REVIEW B, 2013, 88 (11)
  • [4] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [5] Balog R, 2010, NAT MATER, V9, P315, DOI [10.1038/nmat2710, 10.1038/NMAT2710]
  • [6] Thermal Gradients on Graphene to Drive Nanoflake Motion
    Becton, Matthew
    Wang, Xianqiao
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (02) : 722 - 730
  • [7] Electromechanical resonators from graphene sheets
    Bunch, J. Scott
    van der Zande, Arend M.
    Verbridge, Scott S.
    Frank, Ian W.
    Tanenbaum, David M.
    Parpia, Jeevak M.
    Craighead, Harold G.
    McEuen, Paul L.
    [J]. SCIENCE, 2007, 315 (5811) : 490 - 493
  • [8] Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition
    Cai, Weiwei
    Moore, Arden L.
    Zhu, Yanwu
    Li, Xuesong
    Chen, Shanshan
    Shi, Li
    Ruoff, Rodney S.
    [J]. NANO LETTERS, 2010, 10 (05) : 1645 - 1651
  • [9] Nanoscale Directional Motion towards Regions of Stiffness
    Chang, Tienchong
    Zhang, Hongwei
    Guo, Zhengrong
    Guo, Xingming
    Gao, Huajian
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (01)
  • [10] Substrate coupling suppresses size dependence of thermal conductivity in supported graphene
    Chen, Jie
    Zhang, Gang
    Li, Baowen
    [J]. NANOSCALE, 2013, 5 (02) : 532 - 536