A two-grid discretization method for decoupling systems of partial differential equations

被引:61
作者
Jin, Jicheng [1 ]
Shu, Shi
Xu, Jinchao
机构
[1] Xiangtan Univ, Inst Computat & Appl Math, Xiangtun 411100, Hunan Province, Peoples R China
[2] Xiangtan Univ, Dept Math, Xiangtun, Hunan Province, Peoples R China
[3] Penn State Univ, Ctr Computat Math & Applicat, University Pk, PA 16802 USA
关键词
Schrodinger type equation; coupled system; finite element method; two-grid;
D O I
10.1090/S0025-5718-06-01869-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a two-grid finite element method for solving coupled partial differential equations, e.g., the Schrodinger-type equation. With this method, the solution of the coupled equations on a. ne grid is reduced to the solution of coupled equations on a much coarser grid together with the solution of decoupled equations on the fine grid. It is shown, both theoretically and numerically, that the resulting solution still achieves asymptotically optimal accuracy..
引用
收藏
页码:1617 / 1626
页数:10
相关论文
共 24 条
[1]   Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems [J].
Arbogast, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :576-598
[2]   Two-level method for the discretization of nonlinear boundary value problems [J].
Axelsson, O ;
Layton, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (06) :2359-2374
[3]  
Axelsson O, 2000, INT J NUMER METH ENG, V49, P1479, DOI 10.1002/1097-0207(20001230)49:12<1479::AID-NME4>3.0.CO
[4]  
2-4
[5]   Minimum residual adaptive multilevel finite element procedure for the solution of nonlinear stationary problems [J].
Axelsson, O ;
Kaporin, IE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (03) :1213-1229
[6]   A fast two-grid and finite section method for a class of integral equations on the real line with application to an acoustic scattering problem in the half-plane [J].
Chandler-Wilde, SN ;
Rahman, M ;
Ross, CR .
NUMERISCHE MATHEMATIK, 2002, 93 (01) :1-51
[7]   Two-grid finite-element schemes for the transient Navier-Stokes problem [J].
Girault, V ;
Lions, JL .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (05) :945-980
[8]  
Huang YQ, 2003, MATH COMPUT, V72, P1057, DOI 10.1090/S0025-5718-02-01459-X
[9]   A two-level method with backtracking for the Navier-Stokes equations [J].
Layton, W ;
Tobiska, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (05) :2035-2054
[10]   2-LEVEL PICARD AND MODIFIED PICARD METHODS FOR THE NAVIER-STOKES EQUATIONS [J].
LAYTON, W ;
LENFERINK, W .
APPLIED MATHEMATICS AND COMPUTATION, 1995, 69 (2-3) :263-274