Toward the generation of reproducible synthetic surface data in optical metrology

被引:3
作者
Pineda, Jesus [1 ]
Altamar-Mercado, Hernando [2 ]
Romero, Lenny A. [2 ]
Marrugo, Andres G. [1 ]
机构
[1] Univ Tecnol Bolivar, Fac Ingn, Cartagena, Colombia
[2] Univ Tecnol Bolivar, Fac Ciencias Basicas, Cartagena, Colombia
来源
DIMENSIONAL OPTICAL METROLOGY AND INSPECTION FOR PRACTICAL APPLICATIONS IX | 2020年 / 11397卷
关键词
synthetic data; reproducible research; surface metrology; phase analysis;
D O I
10.1117/12.2558730
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The implementation and generation of synthetic data for testing algorithms in optical metrology are often difficult to reproduce. In this work, we propose a framework for the generation of reproducible synthetic surface data. We present two study cases using the Code Ocean platform, which is based on Docker and Linux container technologies to turn source code repositories into executable images. i) We simulate interference pattern fringe images as acquired by a Michelson interferometric system. The reflectivity changes due to surface topography and roughness. ii) We simulate phase maps from rough isotropic surfaces. The phase data is simultaneously corrupted by noise and phase dislocations. This method relies on Gaussian-Laplacian pyramids to preserve surface features on different scales. The proposed framework enables reproducible surface data simulations, which could increase the impact of algorithm development in optical metrology.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Synthetic data generation for anomaly detection on table grapes [J].
Motoi, Ionut M. ;
Belli, Valerio ;
Carpineto, Alberto ;
Nardi, Daniele ;
Ciarfuglia, Thomas A. .
SMART AGRICULTURAL TECHNOLOGY, 2025, 10
[42]   Federated Synthetic Data Generation with Stronger Security Guarantees [J].
Ghavamipour, Ali Reza ;
Turkmen, Fatih ;
Wang, Rui ;
Liang, Kaitai .
PROCEEDINGS OF THE 28TH ACM SYMPOSIUM ON ACCESS CONTROL MODELS AND TECHNOLOGIES, SACMAT 2023, 2023, :31-42
[43]   Exploring Innovative Approaches to Synthetic Tabular Data Generation [J].
Papadaki, Eugenia ;
Vrahatis, Aristidis G. ;
Kotsiantis, Sotiris .
ELECTRONICS, 2024, 13 (10)
[44]   Exploiting synthetic data generation to enhance pollution prediction [J].
Morales-Garcia, Juan ;
Ramos-Sorroche, Emilio ;
Balderas-Diaz, Sara ;
Guerrero-Contreras, Gabriel ;
Munoz, Andres ;
Santa, Jose ;
Terroso-Saenz, Fernando .
APPLIED SOFT COMPUTING, 2025, 175
[45]   Optical surface metrology for heritage science: proof of concept and critical-constructive discussion [J].
Daffara, Claudia ;
Mazzocato, Sara ;
Marchioro, Giacomo .
OPTICS FOR ARTS, ARCHITECTURE, AND ARCHAEOLOGY, O3A IX, 2023, 12620
[46]   Toward a political economy of synthetic data: A data-intensive capitalism that is not a surveillance capitalism? [J].
Steinhoff, James .
NEW MEDIA & SOCIETY, 2024, 26 (06) :3290-3306
[47]   Synthetic Data Generation and Evaluation Techniques for Classifiers in Data Starved Medical Applications [J].
Bae, Wan D. ;
Alkobaisi, Shayma ;
Horak, Matthew ;
Bankar, Siddheshwari ;
Bhuvaji, Sartaj ;
Kim, Sungroul ;
Park, Choon-Sik .
IEEE ACCESS, 2025, 13 :16584-16602
[48]   Domain Knowledge-Driven Generation of Synthetic Healthcare Data [J].
Hashemi, Atiye Sadat ;
Soliman, Amira ;
Lundstrom, Jens ;
Etminani, Kobra .
CARING IS SHARING-EXPLOITING THE VALUE IN DATA FOR HEALTH AND INNOVATION-PROCEEDINGS OF MIE 2023, 2023, 302 :352-353
[49]   Tabular and latent space synthetic data generation: a literature review [J].
Joao Fonseca ;
Fernando Bacao .
Journal of Big Data, 10
[50]   dsSynthetic: synthetic data generation for the DataSHIELD federated analysis system [J].
Soumya Banerjee ;
Tom R. P. Bishop .
BMC Research Notes, 15