Toward the generation of reproducible synthetic surface data in optical metrology

被引:3
作者
Pineda, Jesus [1 ]
Altamar-Mercado, Hernando [2 ]
Romero, Lenny A. [2 ]
Marrugo, Andres G. [1 ]
机构
[1] Univ Tecnol Bolivar, Fac Ingn, Cartagena, Colombia
[2] Univ Tecnol Bolivar, Fac Ciencias Basicas, Cartagena, Colombia
来源
DIMENSIONAL OPTICAL METROLOGY AND INSPECTION FOR PRACTICAL APPLICATIONS IX | 2020年 / 11397卷
关键词
synthetic data; reproducible research; surface metrology; phase analysis;
D O I
10.1117/12.2558730
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The implementation and generation of synthetic data for testing algorithms in optical metrology are often difficult to reproduce. In this work, we propose a framework for the generation of reproducible synthetic surface data. We present two study cases using the Code Ocean platform, which is based on Docker and Linux container technologies to turn source code repositories into executable images. i) We simulate interference pattern fringe images as acquired by a Michelson interferometric system. The reflectivity changes due to surface topography and roughness. ii) We simulate phase maps from rough isotropic surfaces. The phase data is simultaneously corrupted by noise and phase dislocations. This method relies on Gaussian-Laplacian pyramids to preserve surface features on different scales. The proposed framework enables reproducible surface data simulations, which could increase the impact of algorithm development in optical metrology.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Bias Mitigation via Synthetic Data Generation: A Review [J].
Hameed, Mohamed Ashik Shahul ;
Qureshi, Asifa Mehmood ;
Kaushik, Abhishek .
ELECTRONICS, 2024, 13 (19)
[32]   SynSys: A Synthetic Data Generation System for Healthcare Applications [J].
Dahmen, Jessamyn ;
Cook, Diane .
SENSORS, 2019, 19 (05)
[33]   Synthetic Data Generation for X-ray Imaging [J].
Babaee, Maryam ;
Nilchi, Ahmad Reza Naghsh .
2014 21TH IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2014, :190-194
[34]   Generation of Synthetic Data with Conditional Generative Adversarial Networks [J].
Vega-Marquez, Belen ;
Rubio-Escudero, Cristina ;
Nepomuceno-Chamorro, Isabel .
LOGIC JOURNAL OF THE IGPL, 2022, 30 (02) :252-262
[35]   Generation of Synthetic Data for Handwritten Word Alteration Detection [J].
Dansena, Prabhat ;
Bag, Soumen ;
Pal, Rajarshi .
IEEE ACCESS, 2021, 9 :38979-38990
[36]   Synthetic Battery Data Generation and Validation for Capacity Estimation [J].
Pyne, Moinak ;
Yurkovich, Benjamin J. ;
Yurkovich, Stephen .
BATTERIES-BASEL, 2023, 9 (10)
[37]   Synthetic Agricultural Load Data Generation Using TimeGANs [J].
Zia, Moaz ;
Frazier, Scott ;
Nazaripouya, Hamidreza .
2023 NORTH AMERICAN POWER SYMPOSIUM, NAPS, 2023,
[38]   Synthetic Generation of Trip Data: The Case of Smart Card [J].
Minh Kieu ;
Iris Brighid Meredith ;
Andrea Raith .
Data Science for Transportation, 2023, 5 (2)
[39]   Exploiting GPT for synthetic data generation: An empirical study [J].
Busker, Tony ;
Choenni, Sunil ;
Bargh, Mortaza S. .
GOVERNMENT INFORMATION QUARTERLY, 2025, 42 (01)
[40]   Synthetic Data Generation for Semantic Segmentation of Lecture Videos [J].
Davila, Kenny ;
Xu, Fei ;
Molina, James ;
Setlur, Srirangaraj ;
Govindaraju, Venu .
FRONTIERS IN HANDWRITING RECOGNITION, ICFHR 2022, 2022, 13639 :468-483