Toward the generation of reproducible synthetic surface data in optical metrology

被引:3
作者
Pineda, Jesus [1 ]
Altamar-Mercado, Hernando [2 ]
Romero, Lenny A. [2 ]
Marrugo, Andres G. [1 ]
机构
[1] Univ Tecnol Bolivar, Fac Ingn, Cartagena, Colombia
[2] Univ Tecnol Bolivar, Fac Ciencias Basicas, Cartagena, Colombia
来源
DIMENSIONAL OPTICAL METROLOGY AND INSPECTION FOR PRACTICAL APPLICATIONS IX | 2020年 / 11397卷
关键词
synthetic data; reproducible research; surface metrology; phase analysis;
D O I
10.1117/12.2558730
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The implementation and generation of synthetic data for testing algorithms in optical metrology are often difficult to reproduce. In this work, we propose a framework for the generation of reproducible synthetic surface data. We present two study cases using the Code Ocean platform, which is based on Docker and Linux container technologies to turn source code repositories into executable images. i) We simulate interference pattern fringe images as acquired by a Michelson interferometric system. The reflectivity changes due to surface topography and roughness. ii) We simulate phase maps from rough isotropic surfaces. The phase data is simultaneously corrupted by noise and phase dislocations. This method relies on Gaussian-Laplacian pyramids to preserve surface features on different scales. The proposed framework enables reproducible surface data simulations, which could increase the impact of algorithm development in optical metrology.
引用
收藏
页数:12
相关论文
共 50 条
[21]   A Framework for Synthetic Agetech Attack Data Generation [J].
Khaemba, Noel ;
Traore, Issa ;
Mamun, Mohammad .
JOURNAL OF CYBERSECURITY AND PRIVACY, 2023, 3 (04) :744-757
[22]   PMU Data Feature Considerations for Realistic, Synthetic Data Generation [J].
Idehen, Ikponmwosa ;
Jang, Wonhyeok ;
Overbye, Thomas .
2019 51ST NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2019,
[23]   Hybrid synthetic data generation pipeline that outperforms real data [J].
Natarajan, Sai Abinesh ;
Madden, Michael G. .
JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (02)
[24]   A novel approach to correction of optical aberrations in laser scanning microscopy for surface metrology [J].
Ginani, L. S. ;
Theska, R. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2012, 23 (07)
[25]   Accelerated alloy discovery using synthetic data generation and data mining [J].
Kannan, Rangasayee ;
Nandwana, Peeyush .
SCRIPTA MATERIALIA, 2023, 228
[26]   Surface characterization of Asian lacquers using surface metrology and data science: introducing the roughness spectrum [J].
Ravines, Patrick ;
Sheets, H. David ;
Webb, Marianne ;
Mazurek, Joy ;
Schilling, Michael R. ;
Khanjian, Herant .
SURFACE TOPOGRAPHY-METROLOGY AND PROPERTIES, 2025, 13 (02)
[27]   An Interpolation based Synthetic Battery Data Generation Technique [J].
Channegowda, Janamejaya ;
Maiya, Vageesh ;
Lingaraj, Chaitanya .
2024 IEEE INTERNATIONAL COMMUNICATIONS ENERGY CONFERENCE, INTELEC, 2024,
[28]   Ensuring privacy through synthetic data generation in education [J].
Liu, Qinyi ;
Shakya, Ronas ;
Jovanovic, Jelena ;
Khalil, Mohammad ;
de la Hoz-Ruiz, Javier .
BRITISH JOURNAL OF EDUCATIONAL TECHNOLOGY, 2025, 56 (03) :1053-1073
[29]   Generation and evaluation of privacy preserving synthetic health data [J].
Yale, Andrew ;
Dash, Saloni ;
Dutta, Ritik ;
Guyon, Isabelle ;
Pavao, Adrien ;
Bennett, Kristin P. .
NEUROCOMPUTING, 2020, 416 :244-255
[30]   Synthetic CANBUS Data Generation for Driver Behavior Modeling [J].
Ucuzova, Esranur ;
Kurtulmaz, Ekim ;
Gokalp Yavuz, Fulya ;
Karacan, Hacer ;
Sahin, Nuri Eray .
29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,