THE MONGE-AMPERE EQUATION FOR (n-1)-PLURISUBHARMONIC FUNCTIONS ON A COMPACT KAHLER MANIFOLD

被引:80
作者
Tosatti, Valentino [1 ]
Weinkove, Ben [1 ]
机构
[1] Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
关键词
COMPLEX HESSIAN EQUATIONS; DIRICHLET PROBLEM; RIEMANNIAN-MANIFOLDS; HERMITIAN-MANIFOLDS; POSITIVE CURVATURE; ELLIPTIC-EQUATIONS; METRICS; TORSION; CALABI; DEFORMATION;
D O I
10.1090/jams/875
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A C2 function on ℂn is called (n-1)-plurisubharmonic in the sense of Harvey-Lawson if the sum of any n-1 eigenvalues of its complex Hessian is non-negative. We show that the associated Monge-Ampère equation can be solved on any compact Kähler manifold. As a consequence we prove the existence of solutions to an equation of Fu-Wang-Wu, giving Calabi-Yau theorems for balanced, Gauduchon, and strongly Gauduchon metrics on compact Kähler manifolds. © 2016 American Mathematical Society.
引用
收藏
页码:311 / 346
页数:36
相关论文
共 59 条
[1]  
[Anonymous], DMV SEM BAS
[2]  
[Anonymous], 2012, ADV LECT MATH
[3]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[4]   A LOCAL INDEX THEOREM FOR NON KAHLER-MANIFOLDS [J].
BISMUT, JM .
MATHEMATISCHE ANNALEN, 1989, 284 (04) :681-699
[5]   Weak solutions to the complex Hessian equation [J].
Blocki, Z .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (05) :1735-+
[6]  
Boucksom S, 2013, J ALGEBRAIC GEOM, V22, P201
[7]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[9]  
CHERRIER P, 1987, B SCI MATH, V111, P343
[10]   A variational theory of the Hessian equation [J].
Chou, KS ;
Wang, XJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2001, 54 (09) :1029-1064