Prediction error bounds for linear regression with the TREX

被引:9
作者
Bien, Jacob [1 ]
Gaynanova, Irina [2 ]
Lederer, Johannes [3 ]
Mueller, Christian L. [4 ]
机构
[1] Univ Southern Calif, Dept Data Sci & Operat, Los Angeles, CA USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[3] Univ Washington, Dept Stat & Biostat, Box 354322, Seattle, WA 98195 USA
[4] Simons Fdn, Flatiron Inst, New York, NY USA
关键词
TREX; High-dimensional regression; Tuning parameters; Oracle inequalities; AGGREGATION; SELECTION;
D O I
10.1007/s11749-018-0584-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The TREX is a recently introduced approach to sparse linear regression. In contrast to most well-known approaches to penalized regression, the TREX can be formulated without the use of tuning parameters. In this paper, we establish the first known prediction error bounds for the TREX. Additionally, we introduce extensions of the TREX to a more general class of penalties, and we provide a bound on the prediction error in this generalized setting. These results deepen the understanding of the TREX from a theoretical perspective and provide new insights into penalized regression in general.
引用
收藏
页码:451 / 474
页数:24
相关论文
共 51 条
[1]  
[Anonymous], 2015, PREDICTION ERROR CRO
[2]  
[Anonymous], 2016, Concentration Inequalities: A Nonasymptotic Theory of Independence, DOI DOI 10.1093/ACPROF:OSO/9780199535255.001.0001
[3]  
[Anonymous], 2008, P 25 INT C MACHINE L
[4]   Segmentation of the mean of heteroscedastic data via cross-validation [J].
Arlot, Sylvain ;
Celisse, Alain .
STATISTICS AND COMPUTING, 2011, 21 (04) :613-632
[5]   A survey of cross-validation procedures for model selection [J].
Arlot, Sylvain ;
Celisse, Alain .
STATISTICS SURVEYS, 2010, 4 :40-79
[6]   GAUSSIAN MODEL SELECTION WITH AN UNKNOWN VARIANCE [J].
Baraud, Yannick ;
Giraud, Christophe ;
Huet, Sylvie .
ANNALS OF STATISTICS, 2009, 37 (02) :630-672
[7]   CONTROLLING THE FALSE DISCOVERY RATE VIA KNOCKOFFS [J].
Barber, Rina Foygel ;
Candes, Emmanuel J. .
ANNALS OF STATISTICS, 2015, 43 (05) :2055-2085
[8]   Square-root lasso: pivotal recovery of sparse signals via conic programming [J].
Belloni, A. ;
Chernozhukov, V. ;
Wang, L. .
BIOMETRIKA, 2011, 98 (04) :791-806
[9]   SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR [J].
Bickel, Peter J. ;
Ritov, Ya'acov ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2009, 37 (04) :1705-1732
[10]   Non-Convex Global Minimization and False Discovery Rate Control for the TREX [J].
Bien, Jacob ;
Gaynanova, Irina ;
Lederer, Johannes ;
Muller, Christian L. .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) :23-33