Excitation spectra of strongly interacting bosons in the flat-band Lieb lattice

被引:3
作者
Grygiel, B. [1 ]
Patucha, K. [1 ]
机构
[1] Polish Acad Sci, Inst Low Temp & Struct Res, Okolna 2, PL-50422 Wroclaw, Poland
关键词
SUPERCONDUCTIVITY; SUPERFLUID; MODEL;
D O I
10.1103/PhysRevB.106.224514
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The strongly correlated bosons in flat-band systems are an excellent platform to study a wide range of quantum phenomena. Such systems can be realized in optical lattices filled with ultracold atomic gases. In this paper we study the Bose-Hubbard model in the Lieb lattice by means of the time-dependent Gutzwiller mean-field approach. We find that in the Mott insulator phase the excitation modes are gapped and display purely particle or purely hole character, while in the superfluid phase the excitation spectrum is gapless. The geometry of the Lieb lattice leads to a nonuniform order parameter and nonuniform oscillation energy in the ground state. This results in additional anticrossings between dispersive bands in the excitation spectra, while the flat bands remain insensitive to this effect. We analyze the oscillations of the order parameter on the sublattices as well as the particle-hole character of the excitations. For certain model parameters we find simultaneous pure phase and pure amplitude oscillations within the same mode, separated between the sublattices. Also, we propose a simple method to differentiate between the hole and particle superfluid regions in the Lieb lattice by in situ measurement of the atom population on the sublattices.
引用
收藏
页数:9
相关论文
共 73 条
[41]   Observation of localized flat-band modes in a quasi-one-dimensional photonic rhombic lattice [J].
Mukherjee, Sebabrata ;
Thomson, Robert R. .
OPTICS LETTERS, 2015, 40 (23) :5443-5446
[42]   Observation of a Localized Flat-Band State in a Photonic Lieb Lattice [J].
Mukherjee, Sebabrata ;
Spracklen, Alexander ;
Choudhury, Debaditya ;
Goldman, Nathan ;
Oehberg, Patrik ;
Andersson, Erika ;
Thomson, Robert R. .
PHYSICAL REVIEW LETTERS, 2015, 114 (24)
[43]   Magnetism in the three-dimensional layered Lieb lattice: Enhanced transition temperature via flat-band and Van Hove singularities [J].
Noda, Kazuto ;
Inaba, Kensuke ;
Yamashita, Makoto .
PHYSICAL REVIEW A, 2015, 91 (06)
[44]   Flat-band ferromagnetism in the multilayer Lieb optical lattice [J].
Noda, Kazuto ;
Inaba, Kensuke ;
Yamashita, Makoto .
PHYSICAL REVIEW A, 2014, 90 (04)
[45]   Ferromagnetism of cold fermions loaded into a decorated square lattice [J].
Noda, Kazuto ;
Koga, Akihisa ;
Kawakami, Norio ;
Pruschke, Thomas .
PHYSICAL REVIEW A, 2009, 80 (06)
[46]   Flat-band superconductivity for tight-binding electrons on a square-octagon lattice [J].
Nunes, Lizardo H. C. M. ;
Smith, Cristiane Morais .
PHYSICAL REVIEW B, 2020, 101 (22)
[47]   Interaction-Driven Shift and Distortion of a Flat Band in an Optical Lieb Lattice [J].
Ozawa, Hideki ;
Taie, Shintaro ;
Ichinose, Tomohiro ;
Takahashi, Yoshiro .
PHYSICAL REVIEW LETTERS, 2017, 118 (17)
[48]   Two-dimensional Chern semimetals on the Lieb lattice [J].
Palumbo, Giandomenico ;
Meichanetzidis, Konstantinos .
PHYSICAL REVIEW B, 2015, 92 (23)
[49]   Numerical calculation of spectral functions of the Bose-Hubbard model using bosonic dynamical mean-field theory [J].
Panas, Jaromir ;
Kauch, Anna ;
Kunes, Jan ;
Vollhardt, Dieter ;
Byczuk, Krzysztof .
PHYSICAL REVIEW B, 2015, 92 (04)
[50]   Fragile Topology and Flat-Band Superconductivity in the Strong-Coupling Regime [J].
Peri, Valerio ;
Song, Zhi-Da ;
Bernevig, B. Andrei ;
Huber, Sebastian D. .
PHYSICAL REVIEW LETTERS, 2021, 126 (02)