Colloidal plasmonic back reflectors for light trapping in solar cells

被引:69
作者
Mendes, Manuel J. [1 ]
Morawiec, Seweryn [1 ,2 ]
Simone, Francesca [2 ]
Priolo, Francesco [1 ,2 ,3 ]
Crupi, Isodiana [1 ]
机构
[1] MATIS CNR IMM, I-95123 Catania, Italy
[2] Univ Catania, Dipartimento Fis & Astron, I-95123 Catania, Italy
[3] Scuola Super Catania, I-95123 Catania, Italy
关键词
DIELECTRIC SPHEROIDAL PARTICLES; NEAR-FIELD; NANOSTRUCTURES; NANOPARTICLES; SCATTERING;
D O I
10.1039/c3nr06768h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhibit high diffuse reflectance (up to 75%) in the red and near-infrared spectrum, which can pronouncedly enhance the near-bandgap photocurrent generated by the cells. Furthermore, the colloidal PBRs are fabricated by low-temperature (< 120 degrees C) processes that allow their implementation, as a final step of the cell construction, in typical commercial thin film devices generally fabricated in a superstrate configuration.
引用
收藏
页码:4796 / 4805
页数:10
相关论文
共 38 条
[1]   Silicon thin film solar cells on commercial tiles [J].
Aguas, Hugo ;
Ram, Sanjay K. ;
Araujo, Andreia ;
Gaspar, Diana ;
Vicente, Antonio ;
Filonovich, Sergej A. ;
Fortunato, Elvira ;
Martins, Rodrigo ;
Ferreira, Isabel .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4620-4632
[2]   Thermal stability of hot-wire deposited amorphous silicon [J].
Arendse, CJ ;
Knoesen, D ;
Britton, DT .
THIN SOLID FILMS, 2006, 501 (1-2) :92-94
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[4]   Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells [J].
Battaglia, Corsin ;
Escarre, Jordi ;
Soederstroem, Karin ;
Erni, Lukas ;
Ding, Laura ;
Bugnon, Gregory ;
Billet, Adrian ;
Boccard, Mathieu ;
Barraud, Loris ;
De Wolf, Stefaan ;
Haug, Franz-Josef ;
Despeisse, Matthieu ;
Ballif, Christophe .
NANO LETTERS, 2011, 11 (02) :661-665
[5]   Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles [J].
Beck, F. J. ;
Mokkapati, S. ;
Catchpole, K. R. .
PROGRESS IN PHOTOVOLTAICS, 2010, 18 (07) :500-504
[6]   Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns [J].
Bozzola, Angelo ;
Liscidini, Marco ;
Andreani, Lucio Claudio .
OPTICS EXPRESS, 2012, 20 (06) :A224-A244
[7]   Design principles for particle plasmon enhanced solar cells [J].
Catchpole, K. R. ;
Polman, A. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[8]   Using Patterned Arrays of Metal Nanoparticles to Probe Plasmon Enhanced Luminescence of CdSe Quantum Dots [J].
Chan, Yang-Hsiang ;
Chen, Jixin ;
Wark, Stacey E. ;
Skiles, Stephanie L. ;
Son, Dong Hee ;
Batteas, James D. .
ACS NANO, 2009, 3 (07) :1735-1744
[9]  
Chirila A, 2011, NAT MATER, V10, P857, DOI [10.1038/NMAT3122, 10.1038/nmat3122]
[10]   Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes [J].
Crupi, I. ;
Boscarino, S. ;
Strano, V. ;
Mirabella, S. ;
Simone, F. ;
Terrasi, A. .
THIN SOLID FILMS, 2012, 520 (13) :4432-4435