Capturing Cellular Topology in Multi-Gigapixel Pathology Images

被引:43
作者
Lu, Wenqi [1 ]
Graham, Simon [1 ]
Bilal, Mohsin [1 ]
Rajpoot, Nasir [1 ]
Minhas, Fayyaz [1 ]
机构
[1] Univ Warwick, Dept Comp Sci, Warwick, England
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020) | 2020年
基金
英国医学研究理事会;
关键词
BREAST-CANCER; PERCENTAGE; BIOLOGY; HER2;
D O I
10.1109/CVPRW50498.2020.00138
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In computational pathology, multi-gigapixel whole slide images (WSIs) are typically divided into small patches because of their extremely large size and memory requirements. However, following this strategy, one risks losing visual context which is very important in the development of machine learning models aimed at diagnostic and prognostic assessment of WSIs. In this paper, we propose a novel graph convolutional neural network based model (called Slide Graph) which overcomes these limitations by building a graph representation of the cellular architecture in an entire WSI in a bottom-up manner. We evaluate Slide Graph for prediction of the status of human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR) expression from WSIs of H&E stained tissue slides of breast cancer. We demonstrate that the proposed model outperforms previous state-of-the-art methods and is more computationally efficient. The proposed paradigm of WSI-level graphs can potentially be applied to other problems in computational pathology as well.
引用
收藏
页码:1049 / 1058
页数:10
相关论文
共 51 条
[1]   Cell Cluster Graph for Prediction of Biochemical Recurrence in Prostate Cancer Patients from Tissue Microarrays [J].
Ali, Sahirzeeshan ;
Veltri, Robert ;
Epstein, Jonathan A. ;
Christudass, Christhunesa ;
Madabhushi, Anant .
MEDICAL IMAGING 2013: DIGITAL PATHOLOGY, 2013, 8676
[2]  
Andrews S, 2002, EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, P943
[3]  
Babai L., 1979, 20th Annual Symposium of Foundations of Computer Science, P39, DOI 10.1109/SFCS.1979.8
[4]   From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge [J].
Bandi, Peter ;
Geessink, Oscar ;
Manson, Quirine ;
van Dijk, Marcory ;
Balkenhol, Maschenka ;
Hermsen, Meyke ;
Bejnordi, Babak Ehteshami ;
Lee, Byungjae ;
Paeng, Kyunghyun ;
Zhong, Aoxiao ;
Li, Quanzheng ;
Zanjani, Farhad Ghazvinian ;
Zinger, Svitlana ;
Fukuta, Keisuke ;
Komura, Daisuke ;
Ovtcharov, Vlado ;
Cheng, Shenghua ;
Zeng, Shaoqun ;
Thagaard, Jeppe ;
Dahl, Anders B. ;
Lin, Huangjing ;
Chen, Hao ;
Jacobsson, Ludwig ;
Hedlund, Martin ;
Cetin, Melih ;
Halici, Eren ;
Jackson, Hunter ;
Chen, Richard ;
Both, Fabian ;
Franke, Joerg ;
Kusters-Vandevelde, Heidi ;
Vreuls, Willem ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :550-560
[5]  
Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)
[6]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[7]  
CHEW LP, 1989, ALGORITHMICA, V4, P97, DOI 10.1007/BF01553881
[8]   Automatic detection of invasive ductal carcinoma in whole slide images with Convolutional Neural Networks [J].
Cruz-Roa, Angel ;
Basavanhally, Ajay ;
Gonzalez, Fabio ;
Gilmore, Hannah ;
Feldman, Michael ;
Ganesan, Shridar ;
Shih, Natalie ;
Tomaszewski, John ;
Madabhushi, Anant .
MEDICAL IMAGING 2014: DIGITAL PATHOLOGY, 2014, 9041
[9]   Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy [J].
Cui, XJ ;
Schiff, R ;
Arpino, G ;
Osborne, CK ;
Lee, AV .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (30) :7721-7735
[10]   Augmented cell-graphs for automated cancer diagnosis [J].
Demir, C ;
Gultekin, SH ;
Yener, B .
BIOINFORMATICS, 2005, 21 :7-12