Towards High Performance Data Analytics for Climate Change

被引:4
作者
Fiore, Sandro [1 ]
Elia, Donatello [1 ,2 ]
Palazzo, Cosimo [1 ]
Antonio, Fabrizio [1 ]
D'Anca, Alessandro [1 ]
Foster, Ian [3 ,4 ]
Aloisio, Giovanni [1 ,2 ]
机构
[1] Euro Mediterranean Ctr Climate Change Fdn, Lecce, Italy
[2] Univ Salento, Lecce, Italy
[3] Univ Chicago, Chicago, IL 60637 USA
[4] Argonne Natl Lab, Chicago, IL USA
来源
HIGH PERFORMANCE COMPUTING: ISC HIGH PERFORMANCE 2019 INTERNATIONAL WORKSHOPS | 2020年 / 11887卷
关键词
HPDA; Climate change; Scientific data analysis; Storage model; Multidimensional data; BIG DATA; SOFTWARE;
D O I
10.1007/978-3-030-34356-9_20
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The continuous increase in the data produced by simulations, experiments and edge components in the last few years has forced a shift in the scientific research process, leading to the definition of a fourth paradigm in Science, concerning data-intensive computing. This data deluge, in fact, introduces various challenges related to big data volumes, formats heterogeneity and the speed in the data production and gathering that must be handled to effectively support scientific discovery. To this end, High Performance Computing (HPC) and data analytics are both considered as fundamental and complementary aspects of the scientific process and together contribute to a new paradigm encompassing the efforts from the two fields called High Performance Data Analytics (HPDA). In this context, the Ophidia project provides a HPDA framework which joins the HPC paradigm with scientific data analytics. This contribution presents some aspects regarding the Ophidia HPDA framework, such as the multidimensional storage model, its distributed and hierarchical implementation along with a benchmark of a parallel in-memory time series reduction operator.
引用
收藏
页码:240 / 257
页数:18
相关论文
共 26 条
[1]  
Aloisio G, 2013, P BIG DATA EXTR COMP
[2]   TOWARDS EXASCALE DISTRIBUTED DATA MANAGEMENT [J].
Aloisio, Giovanni ;
Fiore, Sandro .
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2009, 23 (04) :398-400
[3]  
[Anonymous], 2019, CDO USERS GUIDE CLIM, DOI DOI 10.5281/ZENODO.2558193
[4]  
[Anonymous], 2010, P 2010 ACM SIGMOD IN, DOI 10.1145/1807167.1807271
[5]   Big data and extreme-scale computing: Pathways to Convergence-Toward a shaping strategy for a future software and data ecosystem for scientific inquiry [J].
Asch, M. ;
Moore, T. ;
Badia, R. ;
Beck, M. ;
Beckman, P. ;
Bidot, T. ;
Bodin, F. ;
Cappello, F. ;
Choudhary, A. ;
de Supinski, B. ;
Deelman, E. ;
Dongarra, J. ;
Dubey, A. ;
Fox, G. ;
Fu, H. ;
Girona, S. ;
Gropp, W. ;
Heroux, M. ;
Ishikawa, Y. ;
Keahey, K. ;
Keyes, D. ;
Kramer, W. ;
Lavignon, J-F ;
Lu, Y. ;
Matsuoka, S. ;
Mohr, B. ;
Reed, D. ;
Requena, S. ;
Saltz, J. ;
Schulthess, T. ;
Stevens, R. ;
Swany, M. ;
Szalay, A. ;
Tang, W. ;
Varoquaux, G. ;
Vilotte, J-P ;
Wisniewski, R. ;
Xu, Z. ;
Zacharov, I. .
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2018, 32 (04) :435-479
[6]  
Baumann P., 1998, SIGMOD Record, V27, P575, DOI 10.1145/276305.276386
[7]  
Baumann P, 1999, PROCEEDINGS OF THE TWENTY-FIFTH INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES, P746
[8]  
Baumann P, 1997, P 1997 ACM S APPL CO, P166, DOI DOI 10.1145/331697.331732
[9]   Beyond the Data Deluge [J].
Bell, Gordon ;
Hey, Tony ;
Szalay, Alex .
SCIENCE, 2009, 323 (5919) :1297-1298
[10]   On the Use of In-Memory Analytics Workflows to Compute eScience Indicators from Large Climate Datasets [J].
D'Anca, Alessandro ;
Palazzo, Cosimo ;
Elia, Donatello ;
Fiore, Sandro ;
Bistinas, Ioannis ;
Bottcher, Kristin ;
Bennett, Victoria ;
Aloisio, Giovanni .
2017 17TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2017, :1035-1043