Establishment and analysis of numerical model of deuterium fuel ice migration in indirect-drive cryogenic target

被引:1
作者
Guo, Fucheng [1 ]
Li, Yanzhong [1 ]
Li, Cui [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Refrigerat & Cryogen Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Numerical simulation; Fuel ice migration; Heat transfer; Cryogenic target; INERTIAL CONFINEMENT FUSION; THERMAL SIMULATIONS; REQUIREMENTS; TEMPERATURE; IGNITION; ENERGY;
D O I
10.1016/j.fusengdes.2022.113186
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A cryogenic target is the core component in inertial confinement fusion. For meeting the experimental requirements, the uniformity of the fuel ice layer in the capsule needs to reach 99% at least. The capsule has a nonuniform temperature distribution natively resulting from the columnar hohlraum geometry, leading to a nonuniform fuel ice layer profile. A proper temperature distribution along the hohlraum can be used to improve the uniformity of the fuel ice layer. A numerical model that can predict the kinetics of the fuel solid-vapor interface during the migration process is proposed by coupling the heat transfer and flow equations with the Stefan condition. This numerical model has good calculational accuracy verified with the pure-ice sublimation experiment. By studying different hohlraum temperatures and fuel ice layer initial eccentricities, the basic characteristic of ice immigration has been figured out. For the manufacture process, a temperature control scheme has been proposed by which the uniformity of the fuel ice layer can reach 99.57%. For the retention process, a perfectly uniform fuel ice layer can be maintained for 2000s before it cannot meet the ignition standard. These results are of significant guidance on cryogenic target experiments.
引用
收藏
页数:11
相关论文
共 33 条
[1]   Generating low-temperature layers with infrared heating [J].
Bittner, DN ;
Collins, GW ;
Sater, JD .
FUSION SCIENCE AND TECHNOLOGY, 2003, 44 (04) :749-755
[2]   Multi-dimensional computational model of the movement of the solid-gas interface during the layering process in inertial confinement fusion targets in a non-uniform thermal environment [J].
Boehm, K. -J. ;
Raffray, A. R. .
FUSION ENGINEERING AND DESIGN, 2011, 86 (01) :51-65
[3]   How fusion power can contribute to a fully decarbonized European power mix after 2050 [J].
Bustreo, C. ;
Giuliani, U. ;
Maggio, D. ;
Zollino, G. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :2189-2193
[4]   UKAEA capabilities to address the challenges on the path to delivering fusion power [J].
Chapman, I. T. ;
Morris, A. W. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 377 (2141)
[5]  
[陈洵 Chen Xun], 2020, [原子能科学技术, Atomic Energy Science and Technology], V54, P1332
[6]   Approximation of the economy of fusion energy [J].
Entler, Slavomir ;
Horacek, Jan ;
Dlouhy, Tomas ;
Dostal, Vaclav .
ENERGY, 2018, 152 :489-497
[7]   First implosion experiments with cryogenic thermonuclear fuel on the National Ignition Facility [J].
Glenzer, Siegfried H. ;
Spears, Brian K. ;
Edwards, M. John ;
Alger, Ethan T. ;
Berger, Richard L. ;
Bleuel, Darren L. ;
Bradley, David K. ;
Caggiano, Joseph A. ;
Callahan, Debra A. ;
Castro, Carlos ;
Casey, Daniel T. ;
Choate, Christine ;
Clark, Daniel S. ;
Cerjan, Charles J. ;
Collins, Gilbert W. ;
Dewald, Eduard L. ;
Di Nicola, Jean-Michel G. ;
Di Nicola, Pascale ;
Divol, Laurent ;
Dixit, Shamasundar N. ;
Doeppner, Tilo ;
Dylla-Spears, Rebecca ;
Dzenitis, Elizabeth G. ;
Fair, James E. ;
Frenje, Lars Johan Anders ;
Johnson, M. Gatu ;
Giraldez, E. ;
Glebov, Vladimir ;
Glenn, Steven M. ;
Haan, Steven W. ;
Hammel, Bruce A. ;
Hatchett, Stephen P., II ;
Haynam, Christopher A. ;
Heeter, Robert F. ;
Heestand, Glenn M. ;
Herrmann, Hans W. ;
Hicks, Damien G. ;
Holunga, Dean M. ;
Horner, Jeffrey B. ;
Huang, Haibo ;
Izumi, Nobuhiko ;
Jones, Ogden S. ;
Kalantar, Daniel H. ;
Kilkenny, Joseph D. ;
Kirkwood, Robert K. ;
Kline, John L. ;
Knauer, James P. ;
Kozioziemski, Bernard ;
Kritcher, Andrea L. ;
Kroll, Jeremy J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (04)
[8]   Investigation of the yield degradation of the first shaped-pulse implosion experiments on the SG-III laser facility [J].
Gu, Jianfa ;
Ge, Fengjun ;
Zou, Shiyang ;
Dai, Zhensheng ;
Huang, Tianxuan ;
Pu, Yudong ;
Song, Peng ;
Wu, Changshu ;
Li, Chuanying ;
Kang, Dongguo ;
Ye, Wenhua ;
Zheng, Wudi ;
Jiang, Wei ;
Chen, Tao ;
Chen, Zhongjing ;
Yan, Ji ;
Zhang, Xing ;
Yu, Bo ;
Chen, Jiabin ;
Song, Zifeng ;
Tang, Qi ;
Deng, Bo ;
Wang, Feng ;
Yang, Jiamin ;
Jiang, Shaoen ;
Ding, Yongkun ;
Zhu, Shaoping .
PHYSICS OF PLASMAS, 2018, 25 (12)
[9]  
Haan S.W., 2011, PHYS PLASMAS, V18
[10]   CONSIDERATIONS AND REQUIREMENTS FOR PROVIDING CRYOGENIC TARGETS FOR DIRECT-DRIVE INERTIAL FUSION IMPLOSIONS AT THE NATIONAL IGNITION FACILITY [J].
Harding, D. R. ;
Wittman, M. D. ;
Edgell, D. H. .
FUSION SCIENCE AND TECHNOLOGY, 2013, 63 (02) :95-105