Incompressibility of neutron-rich matter

被引:164
作者
Piekarewicz, J. [1 ]
Centelles, M. [2 ,3 ]
机构
[1] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[2] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
[3] Univ Barcelona, Fac Fis, Inst Ciencies Cosmos, E-08028 Barcelona, Spain
来源
PHYSICAL REVIEW C | 2009年 / 79卷 / 05期
关键词
NUCLEAR-MATTER; RECENT PROGRESS; COMPRESSIBILITY; EQUATION; DENSITY; RADII; STATE;
D O I
10.1103/PhysRevC.79.054311
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The saturation properties of neutron-rich matter are investigated in a relativistic mean-field formalism using two accurately calibrated models: NL3 and FSUGold. The saturation properties-density, binding energy per nucleon, and incompressibility coefficient-are calculated as a function of the neutron-proton asymmetry alpha equivalent to(N-Z)/A to all orders in alpha. Good agreement (at the 10% level or better) is found between these numerical calculations and analytic expansions that are given in terms of a handful of bulk parameters determined at saturation density. Using insights developed from the analytic approach and a general expression for the incompressibility coefficient of infinite neutron-rich matter, i.e., K-0(alpha)=K-0+K-tau alpha(2)+..., we construct a hybrid model with values for K-0 and K-tau as suggested by recent experimental findings. Whereas the hybrid model provides a better description of the measured distribution of isoscalar monopole strength in the Sn isotopes relative to both NL3 and FSUGold, it significantly underestimates the distribution of strength in Pb-208. Thus, we conclude that the incompressibility coefficient of neutron-rich matter remains an important open problem.
引用
收藏
页数:11
相关论文
共 50 条
[1]   Reaction dynamics with exotic nuclei [J].
Baran, V ;
Colonna, M ;
Greco, V ;
Di Toro, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 410 (5-6) :335-466
[2]   MICROSCOPIC AND MACROSCOPIC DETERMINATIONS OF NUCLEAR COMPRESSIBILITY [J].
BLAIZOT, JP ;
BERGER, JF ;
DECHARGE, J ;
GIROD, M .
NUCLEAR PHYSICS A, 1995, 591 (03) :435-457
[3]   NUCLEAR COMPRESSIBILITY AND MONOPOLE RESONANCES [J].
BLAIZOT, JP ;
GOGNY, D ;
GRAMMATICOS, B .
NUCLEAR PHYSICS A, 1976, 265 (02) :315-336
[4]   NUCLEAR COMPRESSIBILITIES [J].
BLAIZOT, JP .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1980, 64 (04) :171-248
[5]  
Bohr A., 1998, Nuclear structure, VI
[6]   Neutron radii in nuclei and the neutron equation of state [J].
Brown, BA .
PHYSICAL REVIEW LETTERS, 2000, 85 (25) :5296-5299
[7]   Nuclear Symmetry Energy Probed by Neutron Skin Thickness of Nuclei [J].
Centelles, M. ;
Roca-Maza, X. ;
Vinas, X. ;
Warda, M. .
PHYSICAL REVIEW LETTERS, 2009, 102 (12)
[8]   Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models [J].
Chen, Lie-Wen ;
Ko, Che Ming ;
Li, Bao-An .
PHYSICAL REVIEW C, 2007, 76 (05)
[9]   Neutron radii in mean-field models [J].
Furnstahl, RJ .
NUCLEAR PHYSICS A, 2002, 706 (1-2) :85-110
[10]   The giant monopole resonance in the Sn isotopes: Why is Tin so "fluffy"? [J].
Garg, U. ;
Li, T. ;
Okumura, S. ;
Akimune, H. ;
Fujiwara, M. ;
Harakeh, M. N. ;
Hashimoto, H. ;
Itoh, M. ;
Iwao, Y. ;
Kawabata, T. ;
Kawase, K. ;
Liu, Y. ;
Marks, R. ;
Murakami, T. ;
Nakanishi, K. ;
Nayak, B. K. ;
Rao, P. V. Madhusudhana ;
Sakaguchi, H. ;
Terashima, Y. ;
Uchida, M. ;
Yasuda, Y. ;
Yosoi, M. ;
Zenihiro, J. .
NUCLEAR PHYSICS A, 2007, 788 :36C-43C