Grid method for computation of generalized spheroidal wave functions based on discrete variable representation

被引:14
作者
Yan, Di [1 ]
Peng, Liang-You
Gong, Qihuang
机构
[1] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 03期
基金
中国国家自然科学基金;
关键词
eigenvalues and eigenfunctions; grid computing; Legendre polynomials; matrix algebra; wave functions; ASYMPTOTIC ITERATION METHOD; 2-CENTER PROBLEM; EIGENVALUES; CONTINUUM; EQUATION;
D O I
10.1103/PhysRevE.79.036710
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an efficient and accurate grid method for computations of eigenvalues and eigenfunctions of the generalized spheroidal wave equation. Different from previous studies, our method is based on the expansion of the spheroidal wave function by discrete-variable-representation basis functions constructed from the associated Legendre polynomials. The differential operator can be expressed analytically on the grid points, which are the zeros of the associated Legendre polynomials. The resultant potential matrix is simply diagonal and evaluated directly on the same grid. The corresponding differential equation is thus converted to an eigenvalue problem of a small matrix, whose eigenvalues and eigenvectors are converged very fast. The wave functions can then be evaluated accurately at any desired point from the expansion formula with the computed eigenvectors. Compared to previous methods, our method is direct and efficient for any parameter c, either small or large.
引用
收藏
页数:7
相关论文
共 32 条
[1]  
ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS, P751
[2]   The asymptotic iteration method for the angular spheroidal eigenvalues with arbitrary complex size parameter c [J].
Barakat, T. ;
Abodayeh, K. ;
Abdallah, B. ;
Al-Dossary, O. M. .
CANADIAN JOURNAL OF PHYSICS, 2006, 84 (02) :121-129
[3]   The asymptotic iteration method for the angular spheroidal eigenvalues [J].
Barakat, T ;
Abodayeh, K ;
Mukheimer, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (06) :1299-1304
[4]   On the asymptotic expansion of the spheroidal wave function and its eigenvalues for complex size parameter [J].
Barrowes, BE ;
O'Neill, K ;
Grzegorczyk, TM ;
Kong, JA .
STUDIES IN APPLIED MATHEMATICS, 2004, 113 (03) :271-301
[5]   WAVE FUNCTIONS OF THE HYDROGEN MOLECULAR ION [J].
BATES, DR ;
LEDSHAM, K ;
STEWART, AL .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1953, 246 (911) :215-240
[6]   Lagrange-mesh method for quantum-mechanical problems [J].
Baye, D .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (05) :1095-1109
[7]   The unexplained accuracy of the Lagrange-mesh method [J].
Baye, D ;
Hesse, M ;
Vincke, M .
PHYSICAL REVIEW E, 2002, 65 (02)
[8]   Confined hydrogen atom by the Lagrange-mesh method: Energies, mean radii, and dynamic polarizabilities [J].
Baye, D. ;
Sen, K. D. .
PHYSICAL REVIEW E, 2008, 78 (02)
[9]   GENERALIZED MESHES FOR QUANTUM-MECHANICAL PROBLEMS [J].
BAYE, D ;
HEENEN, PH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (11) :2041-2059
[10]   Lagrange mesh, relativistic flux tube, and rotating string [J].
Buisseret, F ;
Semay, C .
PHYSICAL REVIEW E, 2005, 71 (02)