Working mechanisms of strain sensors utilizing aligned carbon nanotube network and aerosol jet printed electrodes

被引:76
作者
Li, Shu [1 ]
Park, Jin Gyu [1 ]
Wang, Shaokai [1 ]
Liang, Richard [1 ]
Zhang, Chuck [1 ]
Wang, Ben [1 ]
机构
[1] FAMU FSU Coll Engn, Dept Ind & Mfg Engn, High Performance Mat Inst, Tallahassee, FL 32310 USA
关键词
Carbon nanotubes - Gages - Substrates - Polyimides - Epoxy resins - Aerosols - Strain - Yarn;
D O I
10.1016/j.carbon.2014.02.068
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper reports on highly sensitive aligned carbon nanotube network (CNTN)-based strain sensors produced by aerosol jet printed electrodes and polyimide substrates. Two types of sensing mechanisms were revealed. Type A sensors, whose electrodes were directly printed on the CNTNs and embedded in epoxy resin, take advantage of the intrinsic piezoresistive properties of highly oriented carbon nanotube bundles and exhibited large positive gauge factor. Type B sensors, whose electrodes were printed on the polyimide substrate, utilize the effects of applied strains on the contact resistances between layers of the CNTN structure and between CNTN and the electrodes, exhibited large negative gauge factors. Type A and B sensors achieved positive and negative gauge factors up to 20 and 40 in magnitude, respectively. The high performance and flexible nature of the sensors, combined with the capability of scalable manufacturing processes, exhibits promising application potentials. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:303 / 309
页数:7
相关论文
共 29 条
[1]   Carbon nanotube actuators [J].
Baughman, RH ;
Cui, CX ;
Zakhidov, AA ;
Iqbal, Z ;
Barisci, JN ;
Spinks, GM ;
Wallace, GG ;
Mazzoldi, A ;
De Rossi, D ;
Rinzler, AG ;
Jaschinski, O ;
Roth, S ;
Kertesz, M .
SCIENCE, 1999, 284 (5418) :1340-1344
[2]   A review and analysis of electrical percolation in carbon nanotube polymer composites [J].
Bauhofer, Wolfgang ;
Kovacs, Josef Z. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (10) :1486-1498
[3]   Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching [J].
Cao, J ;
Wang, Q ;
Dai, HJ .
PHYSICAL REVIEW LETTERS, 2003, 90 (15) :4
[4]   High Mechanical Performance Composite Conductor: Multi-Walled Carbon Nanotube Sheet/Bismaleimide Nanocomposites [J].
Cheng, Qunfeng ;
Bao, Jianwen ;
Park, JinGyu ;
Liang, Zhiyong ;
Zhang, Chuck ;
Wang, Ben .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (20) :3219-3225
[5]   Current saturation and electrical breakdown in multiwalled carbon nanotubes [J].
Collins, PG ;
Hersam, M ;
Arnold, M ;
Martel, R ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :3128-3131
[6]   Multi-walled carbon nanotubes integrated in microcantilevers for application of tensile strain [J].
Dohn, S ;
Kjelstrup-Hansen, J ;
Madsen, DN ;
Molhave, K ;
Boggild, P .
ULTRAMICROSCOPY, 2005, 105 (1-4) :209-214
[7]   Piezoresistance of carbon nanotubes on deformable thin-film membranes [J].
Grow, RJ ;
Wang, Q ;
Cao, J ;
Wang, DW ;
Dai, HJ .
APPLIED PHYSICS LETTERS, 2005, 86 (09) :1-3
[8]   Enhancing the Tensile Properties of Continuous Millimeter-Scale Carbon Nanotube Fibers by Densification [J].
Hill, Frances A. ;
Havel, Timothy F. ;
Hart, A. John ;
Livermore, Carol .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) :7198-7207
[9]   Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor [J].
Hu, Ning ;
Karube, Yoshifumi ;
Yan, Cheng ;
Masuda, Zen ;
Fukunaga, Hisao .
ACTA MATERIALIA, 2008, 56 (13) :2929-2936
[10]   Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor [J].
Hu, Ning ;
Karube, Yoshifumi ;
Arai, Masahiro ;
Watanabe, Tomonori ;
Yan, Cheng ;
Li, Yuan ;
Liu, Yaolu ;
Fukunaga, Hisao .
CARBON, 2010, 48 (03) :680-687