Giant magnetoresistance in electrodeposited Co-Cu/Cu multilayers: Origin of the absence of oscillatory behavior

被引:49
|
作者
Bakonyi, I. [1 ]
Simon, E. [1 ]
Toth, B. G. [1 ]
Peter, L. [1 ]
Kiss, L. F. [1 ]
机构
[1] Hungarian Acad Sci, Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
cobalt; coercive force; copper; electrodeposits; giant magnetoresistance; magnetic multilayers; remanence; MEAN FREE-PATH; MAGNETIC-PROPERTIES; CO/CU MULTILAYERS; TRANSPORT-PROPERTIES; ELECTRICAL-RESISTIVITY; LAYER THICKNESS; COBALT LAYERS; NI-CU; FILMS; GMR;
D O I
10.1103/PhysRevB.79.174421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A detailed study of the evolution of the magnetoresistance was performed on electrodeposited Co/Cu multilayers with Cu-layer thicknesses ranging from 0.5 to 4.5 nm. For thin Cu layers (up to 1.5 nm), anisotropic magnetoresistance (AMR) was observed, whereas multilayers with thicker Cu layers exhibited clear giant magnetoresistance (GMR) behavior. The GMR magnitude increased up to about 3.5-4 nm Cu-layer thickness and slightly decreased afterward. According to magnetic measurements, all samples exhibited ferromagnetic (FM) behavior. The relative remanence turned out to be about 0.75 for both AMR- and GMR-type multilayers. This clearly indicates the absence of an antiferromagnetic (AF) coupling between adjacent magnetic layers for Cu layers even above 1.5 nm where the GMR effect occurs. The AMR behavior at low spacer thicknesses indicates the presence of strong FM coupling (due to, e.g., pinholes in the spacer and/or areas of the Cu layer where the layer thickness is very small). With increasing spacer thickness, the pinhole density reduces and/or the layer thickness uniformity improves, which both lead to a weakening of the FM coupling. This improvement in multilayer structure quality results in a better separation of magnetic layers and the weaker coupling (or complete absence of interlayer coupling) enables a more random magnetization orientation of adjacent layers, all this leading to an increase in the GMR. Coercive field and zero-field resistivity measurements as well as the results of a structural study reported earlier on the same multilayers provide independent evidence for the microstructural features established here. A critical analysis of former results on electrodeposited Co/Cu multilayers suggests the absence of an oscillating GMR in these systems. It is pointed out that the large GMR reported previously on such Co/Cu multilayers at Cu-layer thicknesses of around 1 nm can be attributed to the presence of a fairly large superparamagnetic (SPM) fraction rather than being due to a strong AF coupling. In the absence of SPM regions as in the present study, AMR only occurs at low spacer thicknesses due to the dominating FM coupling.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Microstructure and giant magnetoresistance of electrodeposited Co-Cu/Cu multilayers
    Péter, L
    Cziráki, A
    Pogány, L
    Kupay, Z
    Bakonyi, I
    Uhlemann, M
    Herrich, M
    Arnold, B
    Bauer, T
    Wetzig, K
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (03) : C168 - C176
  • [2] Structural evolution and giant magnetoresistance in electrodeposited Co-Cu/Cu multilayers
    Chowdhury, P.
    Ghosh, S. K.
    Dogra, Anjana
    Dey, G. K.
    Gowda, Yashwant G.
    Gupta, S. K.
    Ravikumar, G.
    Grover, A. K.
    Suri, A. K.
    PHYSICAL REVIEW B, 2008, 77 (13)
  • [3] Influence of superparamagnetic regions on the giant magnetoresistance of electrodeposited Co-Cu/Cu multilayers
    Peter, L.
    Weihnacht, V.
    Toth, J.
    Padar, J.
    Pogany, L.
    Schneider, C. M.
    Bakonyi, I.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 312 (02) : 258 - 265
  • [4] Structural evolution during growth of electrodeposited Co-Cu/Cu multilayers with giant magnetoresistance
    Cziráki, A
    Péter, L
    Arnold, B
    Thomas, J
    Bauer, HD
    Wetzig, K
    Bakonyi, I
    THIN SOLID FILMS, 2003, 424 (02) : 229 - 238
  • [5] Correlation between interface structure and giant magnetoresistance in electrodeposited Co-Cu/Cu multilayers
    Cziráki, A
    Köteles, M
    Péter, L
    Kupay, Z
    Pádár, J
    Pogány, L
    Bakonyi, I
    Uhlemann, M
    Herrich, M
    Arnold, B
    Thomas, J
    Bauer, HD
    Wetzig, K
    THIN SOLID FILMS, 2003, 433 (1-2) : 237 - 242
  • [6] GIANT MAGNETORESISTANCE OF ELECTRODEPOSITED CO/CU MULTILAYERS
    LENCZOWSKI, SKJ
    SCHONENBERGER, C
    GIJS, MAM
    DEJONGE, WJM
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1995, 148 (03) : 455 - 465
  • [7] Ferromagnetic and superparamagnetic contributions in the magnetoresistance of electrodeposited Co-Cu/Cu multilayers
    Liu, QX
    Péter, L
    Pádár, J
    Bakonyi, I
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) : C316 - C323
  • [8] GIANT MAGNETORESISTANCE IN ELECTRODEPOSITED NI/CU AND CO/CU MULTILAYERS
    BIRD, KD
    SCHLESINGER, M
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (04) : L65 - L66
  • [9] Structure and giant magnetoresistance behaviour of Co-Cu/Cu multilayers electrodeposited under various deposition conditions
    Cziraki, A.
    Peter, L.
    Weihnacht, V.
    Toth, J.
    Simon, E.
    Padar, J.
    Pogany, L.
    Schneider, C. M.
    Gemming, T.
    Wetzig, K.
    Tichy, G.
    Bakonyi, I.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (07) : 2000 - 2012
  • [10] Temperature dependence of giant magnetoresistance and magnetic properties in electrodeposited Co-Cu/Cu multilayers:: The role of superparamagnetic regions
    Péter, L
    Rolik, Z
    Kiss, LF
    Tóth, J
    Weihnacht, V
    Schneider, CM
    Bakonyi, I
    PHYSICAL REVIEW B, 2006, 73 (17):