Molecular Dynamics Study of the Role of Water in the Carbon Dioxide Intercalation in Chloride Ions Bearing Hydrotalcite

被引:6
作者
Khorshidi, Zeinab Naderi [1 ]
Khalkhali, Mohammad [1 ]
Zhang, Hao [1 ]
Choi, Phillip [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
关键词
COMPUTER EXPERIMENTS; CLASSICAL FLUIDS; CO2; CAPTURE; SIMULATIONS; ADSORPTION; HYDROXIDE; SORPTION;
D O I
10.1021/acs.jpcc.8b01691
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics simulation was used to study the role of water in the intercalation of CO, with a model Mg-Al-Cl-hydrotalcite mineral at ambient pressure and temperature. The ClayFF force field was used along with a model Mg-Al-Cl-hydrotalcite containing different amounts of water (H2O) and carbon dioxide (CO2) molecules in its interlayer spacing. It was observed that high CO2, content, say 3.85 mmol g(-1), could be achieved at low water concentrations or even without the presence of water. However, high water concentrations (e.g., 2 H2O molecules/hydrotalcite unit cell, the maximum allowed water concentration observed experimentally) could also yield similar CO2, content, but in this case, the presence of water led to a significant interlayer spacing expansion (from 23.0 angstrom (no water) to 28.5 angstrom). The expansion was likely due to the change in the orientation distribution of the CO2 molecules. Analyzing the orientation of CO2, molecules revealed that they preferred to orientate parallel to the mineral surface at low water concentrations. However, as water concentration increased, CO2 molecules exhibited a wider range of orientations with a significant fraction of them orienting more or less perpendicular to the mineral surface, especially at high CO2, contents. The observed change in the orientation of CO2 was attributed to the dipole interaction between H2O and CO2, molecules and the reduced interaction between CO2, and the hydroxyl groups on hydrotalcite. Also, it was observed that water molecules formed extensive hydrogen bond networks. All of the above findings seem to explain the contradicting results reported in the literature that water is needed under certain conditions to increase the amount of CO2 captured by hydrotalcites. Here, we showed that high amounts of CO2, can be intercalated with the presence of water.
引用
收藏
页码:9507 / 9514
页数:8
相关论文
共 35 条
[1]  
Allen M.P., 1987, Computer simulation of liquids
[2]  
Allen P.A., 2005, Basin Analysis: principles and applications
[3]  
ALLMANN R, 1969, NEUES JB MINERALOGIE, V1969
[4]  
Alsamaq S, 2012, CARBON CYCLE CAPTURE
[5]  
Berendsen H., 1981, INTERMOLECULAR FORCE, P331, DOI [DOI 10.1007/978-94-015-7658-121, DOI 10.1007/978-94-015-7658-1_21]
[6]   HYDROTALCITE-TYPE ANIONIC CLAYS: PREPARATION, PROPERTIES AND APPLICATIONS [J].
Cavani, F. ;
Trifiro, F. ;
Vaccari, A. .
CATALYSIS TODAY, 1991, 11 (02) :173-301
[7]   Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources [J].
Choi, Sunho ;
Drese, Jeffrey H. ;
Jones, Christopher W. .
CHEMSUSCHEM, 2009, 2 (09) :796-854
[8]   Molecular Simulation of Carbon Dioxide Capture by Montmorillonite Using an Accurate and Flexible Force Field [J].
Cygan, Randall T. ;
Romanov, Vyacheslav N. ;
Myshakin, Evgeniy M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (24) :13079-13091
[9]   Molecular models and simulations of layered materials [J].
Cygan, Randall T. ;
Greathouse, Jeffery A. ;
Heinz, Hendrik ;
Kalinichev, Andrey G. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (17) :2470-2481
[10]   Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field [J].
Cygan, RT ;
Liang, JJ ;
Kalinichev, AG .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (04) :1255-1266