Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for ecological data-model integration

被引:48
|
作者
Fer, Istem [1 ]
Gardella, Anthony K. [2 ,3 ]
Shiklomanov, Alexey N. [4 ]
Campbell, Eleanor E. [5 ]
Cowdery, Elizabeth M. [2 ]
De Kauwe, Martin G. [6 ,7 ,8 ]
Desai, Ankur [9 ]
Duveneck, Matthew J. [10 ]
Fisher, Joshua B. [11 ]
Haynes, Katherine D. [12 ]
Hoffman, Forrest M. [13 ,14 ,15 ]
Johnston, Miriam R. [16 ]
Kooper, Rob [17 ]
LeBauer, David S. [18 ]
Mantooth, Joshua [19 ]
Parton, William J. [20 ]
Poulter, Benjamin [4 ]
Quaife, Tristan [21 ,22 ]
Raiho, Ann [23 ]
Schaefer, Kevin [24 ]
Serbin, Shawn P. [25 ]
Simkins, James [26 ]
Wilcox, Kevin R. [27 ]
Viskari, Toni [1 ]
Dietze, Michael C. [2 ]
机构
[1] Finnish Meteorol Inst, POB 503, Helsinki 00101, Finland
[2] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA
[3] Univ Michigan, Sch Environm & Sustainabil, Ann Arbor, MI 48109 USA
[4] NASA, Goddard Space Flight Ctr, Biospher Sci Lab 618, Greenbelt, MD USA
[5] Univ New Hampshire, Earth Syst Res Ctr, Durham, NH 03824 USA
[6] ARC Ctr Excellence Climate Extremes, Sydney, NSW, Australia
[7] Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia
[8] Univ New South Wales, Evolut & Ecol Res Ctr, Sydney, NSW, Australia
[9] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI USA
[10] Harvard Univ, Harvard Forest, Petersham, MA USA
[11] CALTECH, Jet Prop Lab, Pasadena, CA USA
[12] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
[13] Oak Ridge Natl Lab, Computat Earth Sci Grp, Oak Ridge, TN USA
[14] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA
[15] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA
[16] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[17] Univ Illinois, NCSA Natl Ctr Supercomp Applicat, Urbana, IL USA
[18] Univ Arizona, Coll Agr & Life Sci, Tucson, AZ USA
[19] Fulton Sch St Albans, St Albans, MO USA
[20] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA
[21] Univ Reading, UK Natl Ctr Earth Observat, Reading, Berks, England
[22] Univ Reading, Dept Meteorol, Reading, Berks, England
[23] Colorado State Univ, Fish Wildlife & Conservat Biol Dept, Ft Collins, CO 80523 USA
[24] Univ Colorado, Natl Snow & Ice Data Ctr, Cooperat Inst Res Environm Sci, Boulder, CO USA
[25] Brookhaven Natl Lab, Environm & Climate Sci Dept, Upton, NY 11973 USA
[26] Univ Delaware, Newark, DE USA
[27] Univ Wyoming, Ecosyst Sci & Management, Laramie, WY USA
基金
美国国家科学基金会; 芬兰科学院; 澳大利亚研究理事会; 美国能源部; 美国国家航空航天局;
关键词
accessibility; benchmarking; community cyberinfrastructure; data; data assimilation; ecosystem models; interoperability; reproducibility; VEGETATION MODELS; SYSTEM; FUTURE; CALIBRATION; FEEDBACKS; LANDSCAPE;
D O I
10.1111/gcb.15409
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
In an era of rapid global change, our ability to understand and predict Earth's natural systems is lagging behind our ability to monitor and measure changes in the biosphere. Bottlenecks to informing models with observations have reduced our capacity to fully exploit the growing volume and variety of available data. Here, we take a critical look at the information infrastructure that connects ecosystem modeling and measurement efforts, and propose a roadmap to community cyberinfrastructure development that can reduce the divisions between empirical research and modeling and accelerate the pace of discovery. A new era of data-model integration requires investment in accessible, scalable, and transparent tools that integrate the expertise of the whole community, including both modelers and empiricists. This roadmap focuses on five key opportunities for community tools: the underlying foundations of community cyberinfrastructure; data ingest; calibration of models to data; model-data benchmarking; and data assimilation and ecological forecasting. This community-driven approach is a key to meeting the pressing needs of science and society in the 21st century.
引用
收藏
页码:13 / 26
页数:14
相关论文
共 50 条
  • [1] Data-model integration is not magic
    Classen, AT
    Langley, JA
    NEW PHYTOLOGIST, 2005, 166 (02) : 367 - 369
  • [2] CSDMS Data Components: data-model integration tools for Earth surface processes modeling
    Gan, Tian
    Tucker, Gregory E.
    Hutton, Eric W. H.
    Piper, Mark D.
    Overeem, Irina
    Kettner, Albert J.
    Campforts, Benjamin
    Moriarty, Julia M.
    Undzis, Brianna
    Pierce, Ethan
    Mccready, Lynn
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2024, 17 (05) : 2165 - 2185
  • [3] Data-model integration - An approach to assimilation of sea level anomaly data into an oceanographic model
    Babovic, Vladan
    NUMERICAL MODELLING OF HYDRODYNAMICS FOR WATER RESOURCES, 2008, : 67 - 75
  • [5] Built environments, communities, and housing price: A data-model integration approach
    Wei, Hong
    Chen, Yimin
    Chen, Bin
    Shi, Shuai
    Tu, Ying
    Xu, Bing
    APPLIED GEOGRAPHY, 2024, 166
  • [6] Tools for Visualizing Data-Model Misfit and Model Modifications in Structural Equation Modeling
    Meyer, Christitan T.
    Hancock, Gregory R.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2022, 57 (01) : 157 - 158
  • [7] Big data-model integration and AI for vector-borne disease prediction
    Peters, Debra P. C.
    McVey, D. Scott
    Elias, Emile H.
    Pelzel-McCluskey, Angela M.
    Derner, Justin D.
    Burruss, N. Dylan
    Schrader, T. Scott
    Yao, Jin
    Pauszek, Steven J.
    Lombard, Jason
    Rodriguez, Luis L.
    ECOSPHERE, 2020, 11 (06):
  • [8] An Integrated View of Complex Landscapes: A Big Data-Model Integration Approach to Transdisciplinary Science
    Peters, Debra P. C.
    Burruss, N. Dylan
    Rodriguez, Luis L.
    Mcvey, D. Scott
    Elias, Emile H.
    Pelzel-Mccluskey, Angela M.
    Derner, Justin D.
    Schrader, T. Scott
    Yao, Jin
    Pauszek, Steven J.
    Lombard, Jason
    Archer, Steven R.
    Bestelmeyer, Brandon T.
    Browning, Dawn M.
    Brungard, Colby W.
    Hatfield, Jerry L.
    Hanan, Niall P.
    Herrick, Jeffrey E.
    Okin, Gregory S.
    Sala, Osvaldo E.
    Savoy, Heather
    Vivoni, Enrique R.
    BIOSCIENCE, 2018, 68 (09) : 653 - 669
  • [9] A big data-model integration approach for predicting epizootics and population recovery in a keystone species
    Barrile, Gabriel M.
    Augustine, David J.
    Porensky, Lauren M.
    Duchardt, Courtney J.
    Shoemaker, Kevin T.
    Hartway, Cynthia R.
    Derner, Justin D.
    Hunter, Elizabeth A.
    Davidson, Ana D.
    ECOLOGICAL APPLICATIONS, 2023, 33 (04)
  • [10] Preface: Advances in paleoclimate data synthesis and analysis of associated uncertainty: towards data-model integration to understand the climate
    Jonkers, Lukas
    Bothe, Oliver
    Kucera, Michal
    CLIMATE OF THE PAST, 2021, 17 (06) : 2577 - 2581