Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy

被引:95
|
作者
Humpolickova, Jana
Gielen, Ellen
Benda, Ales
Fagulova, Veronika
Vercammen, Jo
vandeVen, Martin
Hof, Martin
Ameloot, Marcel
Engelborghs, Yves [1 ]
机构
[1] Acad Sci Czech Republ, J Heyrovsky Inst Phys Chem, Prague, Czech Republic
[2] Katholieke Univ Leuven, Louvain, Belgium
[3] Hasselt Univ, Biomed Res Inst, Diepenbeek, Belgium
[4] Transnatl Univ Limburg, Diepenbeek, Belgium
关键词
D O I
10.1529/biophysj.106.089474
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The plasma membrane of various mammalian cell types is heterogeneous in structure and may contain microdomains, which can impose constraints on the lateral diffusion of its constituents. Fluorescence correlation spectroscopy (FCS) can be used to investigate the dynamic properties of the plasma membrane of living cells. Very recently, Wawrezinieck et al. (Wawrezinieck, L., H. Rigneault, D. Marguet, and P. F. Lenne. 2005. Biophys. J. 89:4029-4042) described a method to probe the nature of the lateral microheterogeneities of the membrane by varying the beam size in the FCS instrument. The dependence of the width of the autocorrelation function at half-maximum, i.e., the diffusion time, on the transverse area of the confocal volume gives information on the nature of the imposed confinement. We describe an alternative approach that yields essentially the same information, and can readily be applied on commercial FCS instruments by measuring the diffusion time and the particle number at various relative positions of the cell membrane with respect to the waist of the laser beam, i.e., by performing a Z-scan.
引用
收藏
页码:L23 / L25
页数:3
相关论文
共 50 条
  • [41] Probing transcription factor diffusion dynamics in the living mammalian embryo with photoactivatable fluorescence correlation spectroscopy
    Kaur, Gurpreet
    Costa, Mauro W.
    Nefzger, Christian M.
    Silva, Juan
    Fierro-Gonzalez, Juan Carlos
    Polo, Jose M.
    Bell, Toby D. M.
    Plachta, Nicolas
    NATURE COMMUNICATIONS, 2013, 4
  • [42] Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains (vol 49, 114002, 2016)
    Sachl, Radek
    Bergstrand, Jan
    Widengren, Jerker
    Hof, Martin
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (18)
  • [43] New concepts for fluorescence correlation spectroscopy on membranes
    Ries, Jonas
    Schwille, Petra
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (24) : 3487 - 3497
  • [44] FLUORESCENCE CORRELATION SPECTROSCOPY OF LIPID BILAYER MEMBRANES
    HERBERT, TJ
    ELSON, EL
    WEBB, WW
    FEDERATION PROCEEDINGS, 1974, 33 (05) : 1303 - 1303
  • [45] Circular scanning fluorescence correlation spectroscopy on membranes
    Petrasek, Zdenek
    Derenko, Susan
    Schwille, Petra
    OPTICS EXPRESS, 2011, 19 (25): : 25006 - 25021
  • [46] Probing the interior of living cells with fluorescence correlation spectroscopy
    Weiss, Matthias
    FLUORESCENCE METHODS AND APPLICATIONS: SPECTROSCOPY, IMAGING, AND PROBES, 2008, 1130 : 21 - 27
  • [47] Total internal reflection fluorescence spectroscopy for probing porphyrin fluorescence in cell membranes
    Sailer, R
    Strauss, WSL
    Gschwend, MH
    Steiner, R
    Schneckenburger, H
    OPTICAL BIOPSIES AND MICROSCOPIC TECHNIQUES, PROCEEDINGS OF, 1996, 2926 : 162 - 169
  • [48] Membrane Anchor Dependent Colocalization in Cellular Membranes Observed by Fluorescence Cross-Correlation Spectroscopy
    Triffo, Sara B.
    Huang, Hector H.
    Smith, Adam W.
    Groves, Jay T.
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 305A - 305A
  • [49] Fluorescence Correlation Spectroscopy of Magnetite Nanocrystal Diffusion
    Tcherniak, Alexei
    Prakash, Arjun
    Mayo, J. T.
    Colvin, Vicki L.
    Link, Stephan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (03): : 844 - 848
  • [50] FLUORESCENCE CORRELATION SPECTROSCOPY AND BROWNIAN ROTATIONAL DIFFUSION
    ARAGON, SR
    PECORA, R
    BIOPOLYMERS, 1975, 14 (01) : 119 - 137