In situ experimental and modeling study on coal char combustion for coarse particle with effect of gasification in air (O2/N2) and O2/CO2 atmospheres

被引:28
|
作者
Shen, Zhongjie [1 ,2 ]
Zhang, Liqi [3 ]
Liang, Qinfeng [1 ,2 ]
Xu, Jianliang [1 ,2 ]
Lin, Kuangfei [4 ]
Liu, Haifeng [1 ,2 ]
机构
[1] East China Univ Sci & Technol, Minist Educ, Key Lab Coal Gasificat & Energy Chem Engn, POB 272, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Shanghai Engn Res Ctr Coal Gasificat, POB 272, Shanghai 200237, Peoples R China
[3] Huazhong Univ Sci & Technol, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China
[4] East China Univ Sci & Technol, State Environm Protect Key Lab Environm Risk Asse, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Coal; Char combustion; O-2/CO2; atmosphere; CO2; gasification; Reaction front model; OXY-FUEL COMBUSTION; PULVERIZED COAL; CARBON PARTICLES; FLUIDIZED-BED; OXIDATION; CO2; FLOW; DEVOLATILIZATION; IGNITION; CONVERSION;
D O I
10.1016/j.fuel.2018.06.045
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study applied the high temperature stage microscope to investigate coal char combustion in air (O-2/N-2) and O-2/CO2 (volume, 21%/79%) atmospheres with the effect of gasification. A reaction front combustion model was also proposed, coupled with effect of char gasification, to predict the key parameters of char combustion in the O-2/CO2 atmospheres. The combustion process and particle evolution of coarse chars were observed and measured to calculate the carbon conversion. Experimental results showed that the burnout time of the char particle in the O-2/CO2 atmosphere in the was prolonged about 20-25%, compared to the burnout time of chars in air. The overall reaction rates of char particles in the O-2/CO2 atmosphere were lower than the rates in the air for different particle sizes. In addition, reaction rates from model prediction showed good agreements with the experimental data for different particle sizes both in the air and O-2/CO2 atmospheres, which proved the reaction front combustion model was applicable for the char combustion in this study. The reaction front combustion model also predicted that the reaction front decreased with burning time and mass consumption of char particle. For the char combustion in the O-2/CO2 atmosphere, the gasification with CO2 absorbed part of the combustion heat or radiation heat and caused lower particle temperatures and heat fluxes for different particle sizes. The proposed combustion model also predicted that although the effect of the gasification reaction was dominant at the beginning of combustion and then reduced, the conversion of particles was hindered compared to the combustion of char in air.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条
  • [1] Experimental and modeling study of single coal particle combustion in O2/N2 and Oxy-fuel (O2/CO2) atmospheres
    Maffei, Tiziano
    Khatami, Reza
    Pierucci, Sauro
    Faravelli, Tiziano
    Ranzi, Eliseo
    Levendis, Yiannis A.
    COMBUSTION AND FLAME, 2013, 160 (11) : 2559 - 2572
  • [2] Experimental Investigation and Comparison of Pulverized Coal Combustion in CO2/O2− and N2/O2−Atmospheres
    Johannes Hees
    Diego Zabrodiec
    Anna Massmeyer
    Martin Habermehl
    Reinhold Kneer
    Flow, Turbulence and Combustion, 2016, 96 : 417 - 431
  • [3] Modeling of single coal particle combustion in O2/N2 and O2/CO2 atmospheres under fluidized bed condition
    Xiehe Yang
    Yang Zhang
    Daoyin Liu
    Jiansheng Zhang
    Hai Zhang
    Junfu Lyu
    Guangxi Yue
    Frontiers in Energy, 2021, 15 : 99 - 111
  • [4] Study on the surface active reactivity of coal char conversion in O2/CO2 and O2/N2 atmospheres
    Liu, Yang
    Fu, Peifang
    Zhang, Bin
    Yue, Fang
    Zhou, Huaichun
    Zheng, Chuguang
    FUEL, 2016, 181 : 1244 - 1256
  • [5] Comparison of Particle Size Evolution during Pulverized Coal Combustion in O2/CO2 and O2/N2 Atmospheres
    Chen, Yuan
    Wang, Guoliang
    Sheng, Changdong
    ENERGY & FUELS, 2014, 28 (01) : 136 - 145
  • [6] Numerical Study of MILD Combustion for Pulverized Coal in O2/N2, O2/CO2, and O2/H2O Atmospheres
    Tu, Yaojie
    Kong, Fanhai
    Su, Kai
    Liu, Hao
    Zheng, Chuguang
    CLEAN COAL TECHNOLOGY AND SUSTAINABLE DEVELOPMENT, 2016, : 157 - 163
  • [7] Single-coal-particle combustion in O2/N2 and O2/CO2 environments
    Bejarano, Paula A.
    Levendis, Yiannis A.
    COMBUSTION AND FLAME, 2008, 153 (1-2) : 270 - 287
  • [8] Experimental study on the formation of ultrafine particulate matters (PMs) during pulverized coal (PC) char combustion in O2/N2 and O2/CO2 atmospheres
    Lei, Yu
    Niu, Yanqing
    Liang, Yang
    Lv, Yuan
    Hui, Shi'en
    JOURNAL OF THE ENERGY INSTITUTE, 2020, 93 (06) : 2197 - 2203
  • [9] Experimental Study on NO Emission Characteristics of Corn Stalk Combustion in O2/CO2 and O2/N2 Atmospheres
    Liu, Wenyong
    Gou, Xiang
    Liu, Liansheng
    Zhang, Kai
    Wu, Jinxiang
    Wang, Enyu
    PROGRESS IN MATERIALS AND PROCESSES, PTS 1-3, 2013, 602-604 : 1059 - 1063
  • [10] Coal char combustion in O2/N2 and O2/CO2 conditions in a drop tube reactor: An optical study
    Avila, Milena Rodríguez
    Honkanen, Markus
    Raiko, Risto
    Oksanen, Antti
    Industrial Combustion, 2012, : 1 - 22