LDA in Character-LSTM-CRF Named Entity Recognition

被引:1
作者
Konopik, Miloslav [1 ]
Prazak, Ondrej [1 ]
机构
[1] Univ West Bohemia, Fac Appl Sci, Dept Comp Sci & Engn, Univ 8, Plzen 30614, Czech Republic
来源
TEXT, SPEECH, AND DIALOGUE (TSD 2018) | 2018年 / 11107卷
关键词
Named entity recognition; LSTM; LDA; Tensorflow;
D O I
10.1007/978-3-030-00794-2_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a NER system based upon deep learning models with character sequence encoding and word sequence encoding in LSTM layers. The results are boosted with LDA topic models and linear-chain CRF sequence tagging. We reach the new state-ofthe-art performance in NER of 81.77 F-measure for Czech and 85.91 F-measure Spanish.
引用
收藏
页码:58 / 66
页数:9
相关论文
共 15 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Robust multilingual Named Entity Recognition with shallow semi-supervised features [J].
Agerri, Rodrigo ;
Rigau, German .
ARTIFICIAL INTELLIGENCE, 2016, 238 :63-82
[3]  
[Anonymous], 2002, MALLET: A machine learning for language toolkit
[4]  
[Anonymous], 2016, CORR
[5]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[6]  
Chiu J. P., 2016, Trans. Assoc. Comput. Linguist., V4, P357, DOI DOI 10.1162/TACLA00104
[7]  
dos Santos Ccero., 2015, Proceedings of NEWS 2015 The Fifth Named Entities Workshop, P25
[8]  
Erik F, 2002, P CONLL 2002, V20, P1
[9]   Latent semantics in Named Entity Recognition [J].
Konkol, Michal ;
Brychcin, Tomas ;
Konopik, Miloslav .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (07) :3470-3479
[10]  
Konkol M, 2013, LECT NOTES COMPUT SC, V8082, P153, DOI 10.1007/978-3-642-40585-3_20