Neuromorphic Implementation of a Software-defined Camera that can "See" through Fire and Dust in Real-time

被引:0
|
作者
Cha, Jae H. [1 ]
Abbott, A. Lynn [1 ]
Szu, Harold H. [2 ]
Willey, Jefferson [2 ]
Landa, Joseph [2 ]
Krapels, Keith A. [3 ]
机构
[1] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA
[2] Catholic Univ Amer, Washington, DC 20064 USA
[3] Univ Memphis, Memphis, TN 38152 USA
关键词
software-defined camera; molecular thermodynamics; neuromorphic learning algorithm;
D O I
10.1117/12.2052021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Software-defined Cameras (SDC) based on Boltzmann's molecular thermodynamics can "see" through visually-degraded fields such as fire, fog, and dust in some situations. This capability is possible by means of unsupervised learning implemented on a neuromorphic algo-tecture. This paper describes the SDC algorithm design strategy with respect to non-trivial solutions, stability, and accuracy. An example neuromorphic learning algorithm is presented along with unsupervised learning stopping criteria.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] The Real Implementation of ANFIS Channel Equalizer on the System of Software-Defined Radio
    Martinek, Radek
    Zidek, Jan
    IETE JOURNAL OF RESEARCH, 2014, 60 (02) : 183 - 193
  • [42] Real-Time PSK Transceiver Design and Implementation using Software Defined Radio
    Zengin, Mehmet Ali
    Kucuk, Kerem
    Aldirmaz Colak, Sultan
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [43] A Solution to Refining Precision of Pseudo-range for Real-time Software-defined GPS Receiver
    Liu Jian
    Wang Ke
    Chen Wei
    Xie Tao
    Zhang Xiaole
    2009 WRI INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND MOBILE COMPUTING: CMC 2009, VOL I, 2009, : 88 - 91
  • [44] Development of a Real-Time Software-Defined GPS Receiver in a LabVIEW-Based Instrumentation Environment
    Schmidt, Erick
    Akopian, David
    Pack, Daniel J.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2018, 67 (09) : 2082 - 2096
  • [45] RADS: a real-time anomaly detection model for software-defined networks using machine learning
    Sneha, M.
    Kumar, A. Keerthan
    Hegde, Nikhil V.
    Anish, A. S.
    Shobha, G.
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2023, 22 (06) : 1881 - 1891
  • [46] RT-SDN: Adaptive Routing and Priority Ordering for Software-Defined Real-Time Networking
    Oh, Sangeun
    Shin, Insik
    Lee, Kilho
    IEEE SYSTEMS JOURNAL, 2022, 16 (02): : 2379 - 2390
  • [47] A Software-Defined Retransmission Mechanism to Manage Real-Time Traffic in Wi-Fi Networks
    Cena, Gianluca
    Scanzio, Stefano
    Seno, Lucia
    Valenzano, Adriano
    Zunino, Claudio
    AD-HOC, MOBILE, AND WIRELESS NETWORKS (ADHOC-NOW 2019), 2019, 11803 : 275 - 289
  • [48] A Real-time and Memory-saving Link Recovery Mechanism for Green Software-Defined Networking
    Huang, Chia-Wei
    Shen, Chung-An
    Chin, Tai-Lin
    Shen, Shan-Hsiang
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 853 - 857
  • [49] Real-Time Software-Defined Multiformat Transmitter Generating 64QAM at 28 GBd
    Schmogrow, R.
    Hillerkuss, D.
    Dreschmann, M.
    Huebner, M.
    Winter, M.
    Meyer, J.
    Nebendahl, B.
    Koos, C.
    Becker, J.
    Freude, W.
    Leuthold, J.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (21) : 1601 - 1603
  • [50] A real-time and protocol-aware reactive jamming framework built on software-defined radios
    Nguyen, Danh
    Sahin, Cem
    Shishkin, Boris
    Kandasamy, Nagarajan
    Dandekar, Kapil R.
    SRIF 2014 - Proceedings of the ACM SIGCOMM 2014 Workshop on Software Radio Implementation Forum, 2014, : 15 - 22