Wavelet-based space partitioning for symbolic time series analysis

被引:0
作者
Rajagopalan, Venkatesh [1 ]
Ray, Asok [1 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
来源
2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8 | 2005年
关键词
symbolic time series analysis; wavelets; fault detection; complex systems;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent literature has reported symbolic time series analysis of complex systems for real-time anomaly detection. A crucial aspect in this analysis is symbol sequence generation from the observed time series data. This paper presents a wavelet-based partitioning, instead of the currently practiced method of phase-space partitioning, for symbol generation. The partitioning algorithm makes use of the maximum entropy method. The wavelet-space and phase-space partitioning methods are compared with regard to anomaly detection using experimental data.
引用
收藏
页码:5245 / 5250
页数:6
相关论文
共 9 条
  • [1] Abry P., 1997, ONDELETTES TURBULENC
  • [2] [Anonymous], COMPUTATIONAL SIGNAL
  • [3] Symbolic time series analysis for anomaly detection: A comparative evaluation
    Chin, SC
    Ray, A
    Rajagopalan, V
    [J]. SIGNAL PROCESSING, 2005, 85 (09) : 1859 - 1868
  • [4] A review of symbolic analysis of experimental data
    Daw, CS
    Finney, CEA
    Tracy, ER
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (02) : 915 - 930
  • [5] Kantz H, 2004, NONLINEAR TIME SERIE, DOI DOI 10.1017/CBO9780511755798
  • [6] Kennel MB, 2003, PHYS REV LETT, V91, DOI [10.1103/PhysRevLett.91.084102, 10.1063/1.1612266]
  • [7] MALLAT S, 1998, WAVELET TOUR SIGNA E, V2
  • [8] RAJAGOPALAN V, 2004, IASTED CSS
  • [9] Ray A., 2004, SYMBOLIC DYNAMIC ANA, V84