Hydrothermal Synthesis of 3D Porous Structure Bi2WO6/Reduced Graphene Oxide Hydrogels for Enhancing Supercapacitor Performance

被引:47
作者
Zheng, Huajun [1 ,2 ]
Yang, Guang [1 ]
Chen, Sanming [1 ]
Jia, Yi [3 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Chem, Hangzhou 310014, Zhejiang, Peoples R China
[2] Zhejiang Univ Technol, State Key Lab Breeding Base Green Chem Synth Tech, Hangzhou 310014, Peoples R China
[3] Griffith Univ, Queensland Micro & Nanotechnol Ctr, Nathan, Qld, Australia
关键词
supercapacitor; 3D porous structure; Bi2WO6; reduced graphene oxide hydrogels; hydrothermal method; BINDER-FREE ELECTRODES; ELECTROCHEMICAL PROPERTIES; FACILE SYNTHESIS; ENERGY-STORAGE; NANOSHEET; NANOCOMPOSITES; CAPACITY; BI2WO6; FILM;
D O I
10.1002/celc.201600634
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Three-dimensional (3D) porous Bi2WO6/reduced graphene oxide hydrogels (BWO/rGO HGs) have been prepared via a facile one-pot hydrothermal process for supercapacitor applications. Compared with the pristine Bi2WO6 electrode, the 3D porous BWO/rGO HGs exhibit much higher capacitive performances with a specific capacitance of 268.7 Fg(-1) at a current density of 0.75Ag(-1) and good cycling stability with 81% capacitance retention after 1000 cycles at 3Ag(-1). The remarkable electrochemical properties could be attributed to unique architecture of 3D porous rGO HGs supported Bi2WO6, which provided an excellent electrical conductivity substrate and more channels for ions diffusion. The results indicate that a new synthesis route of 3D porous structure hydrogel loaded binary metal oxide have potential applications in energy storage device.
引用
收藏
页码:577 / 584
页数:8
相关论文
共 39 条
[1]   Microwave-assisted solution-phase preparation of flower-like Bi2WO6 and its visible-light-driven photocatalytic properties [J].
Cao, Xiao-Feng ;
Zhang, Lei ;
Chen, Xue-Tai ;
Xue, Zi-Ling .
CRYSTENGCOMM, 2011, 13 (01) :306-311
[2]   MnMoO4•4H2O nanoplates grown on a Ni foam substrate for excellent electrochemical properties [J].
Cao, Yunjiu ;
Li, Wenyao ;
Xu, Kaibing ;
Zhang, Yuxin ;
Ji, Tao ;
Zou, Rujia ;
Yang, Jianmao ;
Qin, Zongyi ;
Hu, Junqing .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (48) :20723-20728
[3]   Aligned Ni-Co-Mn oxide nanosheets grown on conductive substrates as binder-free electrodes for high capacity electrochemical energy storage devices [J].
Chen, Sanming ;
Yang, Guang ;
Zheng, Huajun .
ELECTROCHIMICA ACTA, 2016, 220 :296-303
[4]   Facile Synthesis of CoWO4 Nanosheet Arrays Grown on Nickel Foam Substrates for Asymmetric Supercapacitors [J].
Chen, Sanming ;
Yang, Guang ;
Jia, Yi ;
Zheng, Huajun .
CHEMELECTROCHEM, 2016, 3 (09) :1490-1496
[5]   Enhanced Photocatalytic Removal of Sodium Pentachlorophenate with Self-Doped Bi2WO6 under Visible Light by Generating More Superoxide Ions [J].
Ding, Xing ;
Zhao, Kun ;
Zhang, Lizhi .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (10) :5823-5831
[6]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[7]   Tin Oxide/Graphene Aerogel Nanocomposites Building Superior Rate Capability for Lithium Ion Batteries [J].
Fan, Linlin ;
Li, Xifei ;
Cui, Yanhua ;
Xu, Hui ;
Zhang, Xianfa ;
Xiong, Dongbin ;
Yan, Bo ;
Wang, Yufen ;
Li, Dejun .
ELECTROCHIMICA ACTA, 2015, 176 :610-619
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors [J].
Guo, Di ;
Zhang, Ping ;
Zhang, Haiming ;
Yu, Xinzhi ;
Zhu, Jian ;
Li, Qiuhong ;
Wang, Taihong .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (32) :9024-9027
[10]   Nanostructured core-shell electrode materials for electrochemical capacitors [J].
Jiang, Long-bo ;
Yuan, Xing-zhong ;
Liang, Jie ;
Zhang, Jin ;
Wang, Hou ;
Zeng, Guang-ming .
JOURNAL OF POWER SOURCES, 2016, 331 :408-425