Recovery of Critical Rare-Earth Elements Using ETS-10 Titanosilicate

被引:9
作者
Thakkar, Jay [1 ]
Wissler, Blaine [1 ]
Dudenas, Nick [1 ]
Yin, Xinyang [1 ]
Vailhe, Madeline [2 ]
Bricker, John [3 ]
Zhang, Xueyi [1 ]
机构
[1] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[3] Franklin Towne Charter High Sch, Philadelphia, PA 19137 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
HEAVY-METAL IONS; ADSORPTION PROPERTIES; BIOSORPTION; ISOTHERM; PB2+;
D O I
10.1021/acs.iecr.9b02623
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The present work deals with the recovery of critical rare-earth elements (REEs) from acidic aqueous solutions. In doing so, we study the adsorption of these ions on ETS-10 titanosilicate. The experimental data are individually fitted with the Langmuir and Freundlich isotherms, and a high adsorption capacity for REEs is found. We further explore the competitive separation of Nd3+ from Ni2+ ions and Dy3+ from Nd3+ ions usually found in aqueous streams generated during the recycling of NiMH batteries and NdFeB permanent magnets, respectively, via adsorption using ETS-10.
引用
收藏
页码:11121 / 11126
页数:6
相关论文
共 50 条
  • [21] Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid
    Minoda, Ayumi
    Sawada, Hitomi
    Suzuki, Sonoe
    Miyashita, Shin-ichi
    Inagaki, Kazumi
    Yamamoto, Takaiku
    Tsuzuki, Mikio
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (03) : 1513 - 1519
  • [22] A review of greener approaches for rare earth elements recovery from mineral wastes
    Tuncay, Gizem
    Yuksekdag, Ayse
    Mutlu, Borte Kose
    Koyuncu, Ismail
    ENVIRONMENTAL POLLUTION, 2024, 357
  • [23] Various microbes used for the recovery of rare earth elements from mine wastewater
    Yan, Qiuting
    Chen, Zuliang
    BIORESOURCE TECHNOLOGY, 2024, 408
  • [24] Recovery of rare earth elements from acid mine drainage by ion exchange
    Felipe, E. C. B.
    Batista, K. A.
    Ladeira, A. C. Q.
    ENVIRONMENTAL TECHNOLOGY, 2021, 42 (17) : 2721 - 2732
  • [25] Effect of Microgravity on Rare Earth Elements Recovery by Burkholderia cepacia and Aspergillus niger
    He, Ni
    Zhang, Zhongxian
    Meng, Xiaoyu
    Davaasambuu, Sarangerel
    Zhao, Hongbo
    MINERALS, 2024, 14 (10)
  • [26] Bioleaching of Phosphate Minerals UsingAspergillus niger: Recovery of Copper and Rare Earth Elements
    Castro, Laura
    Luisa Blazquez, Maria
    Gonzalez, Felisa
    Angel Munoz, Jesus
    METALS, 2020, 10 (07) : 1 - 13
  • [27] Repeated Recovery of Rare Earth Elements Using a Highly Selective and Thermo-Responsive Genetically Encoded Polypeptide
    Hussain, Zohaib
    Kim, Seoungkyun
    Cho, Jinhwan
    Sim, Gyudae
    Park, Youngjune
    Kwon, Inchan
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (13)
  • [28] A green method based on living macroalgae for the removal of rare-earth elements from contaminated waters
    Pinto, Joao
    Henriques, Bruno
    Soares, Jose
    Costa, Marcelo
    Dias, Mariana
    Fabre, Elaine
    Lopes, Claudia B.
    Vale, Carlos
    Pinheiro-Torres, Jose
    Pereira, Eduarda
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 263
  • [29] Effectively auto-regulated adsorption and recovery of rare earth elements via an engineered E. coli
    Xie, Xiaoman
    Tan, Xirui
    Yu, Yiyan
    Li, Yunchong
    Wang, Pengbo
    Liang, Yuanhao
    Yan, Yunjun
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 424
  • [30] Biomining for sustainable recovery of rare earth elements from mining waste: A comprehensive review
    Vo, Phong H. N.
    Danaee, Soroosh
    Hai, Ho Truong Nam
    Huy, Lai Nguyen
    Nguyen, Tuan A. H.
    Nguyen, Hong T. M.
    Kuzhiumparambil, Unnikrishnan
    Kim, Mikael
    Nghiem, Long D.
    Ralph, Peter J.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 908