Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges

被引:148
作者
Zhang, Guobin [1 ]
Qu, Zhiguo [1 ]
Tao, Wen-Quan [1 ]
Wang, Xueliang [1 ]
Wu, Lizhen [2 ]
Wu, Siyuan [3 ]
Xie, Xu [2 ]
Tongsh, Chasen [2 ]
Huo, Wenming [2 ]
Bao, Zhiming [2 ]
Jiao, Kui [4 ,5 ]
Wang, Yun [6 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, MOE Key Lab Thermofluid Sci & Engn, Xian, Peoples R China
[2] State Key Lab Engines, Tianjin 300350, Peoples R China
[3] Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA
[4] Tianjin Univ, State Key Lab Engines, Tianjin 300350, Peoples R China
[5] Tianjin Univ, Natl Ind Educ Platform Energy Storage, Tianjin 300350, Peoples R China
[6] Univ Calif Irvine, Dept Mech & Aerosp Engn, Renewable Energy Resources Lab RERL, Irvine, CA 92697 USA
基金
中国国家自然科学基金; 美国国家科学基金会; 中国博士后科学基金;
关键词
GAS-DIFFUSION LAYER; CONTACT RESISTANCE PREDICTION; 3-DIMENSIONAL MULTIPHASE SIMULATION; EFFECTIVE THERMAL-CONDUCTIVITY; CONVECTIVE HEAT-TRANSFER; REDUCED GRAPHENE OXIDE; MODELING 2-PHASE FLOW; METAL BIPOLAR PLATES; PORE CELLULAR FOAM; COLD-START;
D O I
10.1021/acs.chemrev.2c00539
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Porous flow fields distribute fuel and oxygen for the electrochemical reactions of proton exchange membrane (PEM) fuel cells through their pore network instead of conventional flow channels. This type of flow fields has showed great promises in enhancing reactant supply, heat removal, and electrical conduction, reducing the concentration performance loss and improving operational stability for fuel cells. This review presents the research and development progress of porous flow fields with insights for next-generation PEM fuel cells of high power density (e.g., similar to 9.0 kW L-1). Materials, fabrication methods, fundamentals, and fuel cell performance associated with porous flow fields are discussed in depth. Major challenges are described and explained, along with several future directions, including separated gas/liquid flow configurations, integrated porous structure, full morphology modeling, data-driven methods, and artificial intelligence-assisted design/ optimization.
引用
收藏
页码:989 / 1039
页数:51
相关论文
共 442 条
[41]   The effective thermal conductivity of high porosity fibrous metal foams [J].
Calmidi, VV ;
Mahajan, RL .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1999, 121 (02) :466-471
[42]   Forced convection in high porosity metal foams [J].
Calmidi, VV ;
Mahajan, RL .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2000, 122 (03) :557-565
[43]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[44]   Effects of geometrical dimensions of flow channels of a large-active-area PEM fuel cell: A CFD study [J].
Carcadea, Elena ;
Ismail, Mohammed S. ;
Ingham, Derek Bin ;
Patularu, Laurentiu ;
Schitea, Dorin ;
Marinoiu, Adriana ;
Ion-Ebrasu, Daniela ;
Mocanu, Dan ;
Varlam, Mihai .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (25) :13572-13582
[45]   The effects of cathode flow channel size and operating conditions on PEM fuel performance: A CFD modelling study and experimental demonstration [J].
Carcadea, Elena ;
Varlam, Mihai ;
Ingham, Derek B. ;
Ismail, Mohammed S. ;
Patularu, Laurentiu ;
Marinoiu, Adriana ;
Schitea, Dorin .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (08) :2789-2804
[46]   Manufacture of metal foam layers by laser metal deposition [J].
Carcel, Bernabe ;
Carcel, Alfonso C. ;
Perez, Irene ;
Fernandez, Estrella ;
Barreda, Amparo ;
Sampedro, Jesus ;
Ramos, Jose A. .
XVII INTERNATIONAL SYMPOSIUM ON GAS FLOW, CHEMICAL LASERS, AND HIGH-POWER LASERS, 2009, 7131
[47]   Validation of a two-phase multidimensional polymer electrolyte membrane fuel cell computational model using current distribution measurements [J].
Carnes, Brian ;
Spernjak, Dusan ;
Luo, Gang ;
Hao, Liang ;
Chen, Ken S. ;
Wang, Chao-Yang ;
Mukundan, Rangachary ;
Borup, Rodney L. .
JOURNAL OF POWER SOURCES, 2013, 236 :126-137
[48]   Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates [J].
Carton, J. G. ;
Olabi, A. G. .
ENERGY, 2017, 136 :185-195
[49]   Representative model and flow characteristics of open pore cellular foam and potential use in proton exchange membrane fuel cells [J].
Carton, J. G. ;
Olabi, A. G. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (16) :5726-5738
[50]   Polymer electrolyte membrane fuel cell flow field designs and approaches for performance enhancement [J].
Celik, Erman ;
Karagoz, Irfan .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2020, 234 (08) :1189-1214