Solitary wave and periodic wave solutions for the quintic discrete nonlinear Schrodinger equation

被引:7
作者
Wu, Xiao-Fei [1 ]
机构
[1] Zhejiang Lishui Univ, Coll Informat, Lishui 323000, Peoples R China
关键词
INTEGRABLE SEMI-DISCRETIZATION; LOCALIZED MODES; TODA LATTICE; TRANSFORMATION; SOLITONS; SYMMETRIES;
D O I
10.1016/j.chaos.2007.08.076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct a new truncation function expansion approach to investigate exact solutions for the quintic discrete nonlinear Schrodinger equation. As a result, many types of exact solutions are obtained which includes discrete bell-type solitary wave solution, solitary wave solution, triangular periodic wave solution, alternating phase bell-type solitary wave solution, alternating phase solitary wave solution, and alternating phase triangular periodic wave solution. The properties of some new exact solutions are shown in figures. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1240 / 1248
页数:9
相关论文
共 37 条
[31]   Integrable semi-discretization of the coupled nonlinear Schrodinger equations [J].
Tsuchida, T ;
Ujino, H ;
Wadati, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (11) :2239-2262
[32]   CONSERVATION LAWS OF A VOLTERRA SYSTEM AND NONLINEAR SELF-DUAL NETWORK EQUATION [J].
WADATI, M ;
WATANABE, M .
PROGRESS OF THEORETICAL PHYSICS, 1977, 57 (03) :808-811
[33]   BACKLUND TRANSFORMATION FOR EXPONENTIAL LATTICE [J].
WADATI, M ;
TODA, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1975, 39 (05) :1196-1203
[34]  
WADATI M, 1976, SUP PROG THEOR PHYS, P36
[35]   The solutions of Toda lattice and Volterra lattice [J].
Xie, FD ;
Lü, ZS ;
Wang, DK .
CHAOS SOLITONS & FRACTALS, 2006, 27 (01) :217-222
[36]  
Zhang HB, 2005, CHINESE PHYS, V14, P1063, DOI 10.1088/1009-1963/14/6/001
[37]  
ZHU JM, 2005, CHINESE PHYS, V14, P1009