Solitary wave and periodic wave solutions for the quintic discrete nonlinear Schrodinger equation

被引:7
作者
Wu, Xiao-Fei [1 ]
机构
[1] Zhejiang Lishui Univ, Coll Informat, Lishui 323000, Peoples R China
关键词
INTEGRABLE SEMI-DISCRETIZATION; LOCALIZED MODES; TODA LATTICE; TRANSFORMATION; SOLITONS; SYMMETRIES;
D O I
10.1016/j.chaos.2007.08.076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct a new truncation function expansion approach to investigate exact solutions for the quintic discrete nonlinear Schrodinger equation. As a result, many types of exact solutions are obtained which includes discrete bell-type solitary wave solution, solitary wave solution, triangular periodic wave solution, alternating phase bell-type solitary wave solution, alternating phase solitary wave solution, and alternating phase triangular periodic wave solution. The properties of some new exact solutions are shown in figures. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1240 / 1248
页数:9
相关论文
共 37 条
  • [1] NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS
    ABLOWITZ, MJ
    LADIK, JF
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) : 598 - 603
  • [2] ABLOWITZ MJ, 1977, STUD APPL MATH, V57, P1
  • [3] Discrete diffraction managed spatial solitons
    Ablowitz, MJ
    Musslimani, ZH
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (25) : 254102 - 254102
  • [4] ABLOWITZ MJ, 1976, STUD APPL MATH, V55, P213
  • [5] Symbolic computation of hyperbolic tangent solutions for nonlinear differential-difference equations
    Baldwin, D
    Göktas, Ü
    Hereman, W
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2004, 162 (03) : 203 - 217
  • [6] Exploiting discreteness for switching in waveguide arrays
    Bang, O
    Miller, PD
    [J]. OPTICS LETTERS, 1996, 21 (15) : 1105 - 1107
  • [7] ON THE INTEGRABILITY OF SYSTEMS OF NONLINEAR ORDINARY DIFFERENTIAL-EQUATIONS WITH SUPERPOSITION PRINCIPLES
    BOUNTIS, TC
    PAPAGEORGIOU, V
    WINTERNITZ, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) : 1215 - 1224
  • [8] Perturbation theories of a discrete, integrable nonlinear Schrodinger equation
    Cai, D
    Bishop, AR
    GronbechJensen, N
    [J]. PHYSICAL REVIEW E, 1996, 53 (04): : 4131 - 4136
  • [9] DISCRETE SELF-FOCUSING IN NONLINEAR ARRAYS OF COUPLED WAVE-GUIDES
    CHRISTODOULIDES, DN
    JOSEPH, RI
    [J]. OPTICS LETTERS, 1988, 13 (09) : 794 - 796
  • [10] LINK BETWEEN SOLITARY WAVES AND PROJECTIVE RICCATI-EQUATIONS
    CONTE, R
    MUSETTE, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (21): : 5609 - 5623