Integrated density of states for ergodic random Schrodinger operators on manifolds

被引:13
作者
Peyerimhoff, N [1 ]
Veselic, I [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
基金
新加坡国家研究基金会;
关键词
integrated density of states; random Schrodinger operators; Riemannian manifolds with compact quotient; amenable groups; ergodic theorem;
D O I
10.1023/A:1016222913877
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Riemannian universal covering of a compact manifold M = X/Gamma and assume that Gamma is amenable. We show the existence of a (nonrandom) integrated density of states for an ergodic random family of Schrodinger operators on X.
引用
收藏
页码:117 / 135
页数:19
相关论文
共 50 条
[41]   Band edge behavior of the integrated density of states of random Jacobi matrices in dimension 1 [J].
Klopp, F .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (3-4) :927-947
[42]   Band Edge Behavior of the Integrated Density of States of Random Jacobi Matrices in Dimension 1 [J].
Frédéric Klopp .
Journal of Statistical Physics, 1998, 90 :927-947
[43]   Lp-Approximation of the Integrated Density of States for Schrödinger Operators with Finite Local Complexity [J].
Michael J. Gruber ;
Daniel H. Lenz ;
Ivan Veselić .
Integral Equations and Operator Theory, 2011, 69 :217-232
[44]   Poisson statistics for 1d Schrodinger operators with random decaying potentials [J].
Kotani, Shinichi ;
Nakano, Fumihiko .
ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
[45]   ASYMPTOTIC BEHAVIOR OF THE INTEGRATED DENSITY OF STATES FOR RANDOM POINT FIELDS ASSOCIATED WITH CERTAIN FREDHOLM DETERMINANTS [J].
Ueki, Naomasa .
KYUSHU JOURNAL OF MATHEMATICS, 2019, 73 (01) :43-67
[46]   The landscape law for the integrated density of states [J].
David, G. ;
Filoche, M. ;
Mayboroda, S. .
ADVANCES IN MATHEMATICS, 2021, 390
[47]   Decorrelation Estimates for Random Discrete Schrodinger Operators in Dimension One and Applications to Spectral Statistics [J].
Shirley, Christopher .
JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (06) :1298-1340
[48]   Absolutely Continuous Spectrum for Random Schrodinger Operators on the Fibonacci and Similar Tree-strips [J].
Sadel, Christian .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (3-4) :409-440
[49]   Perturbations of continuum random Schrodinger operators with applications to Anderson orthogonality and the spectral shift function [J].
Dietlein, Adrian ;
Gebert, Martin ;
Mueller, Peter .
JOURNAL OF SPECTRAL THEORY, 2019, 9 (03) :921-965
[50]   A lower Wegner estimate and bounds on the spectral shift function for continuum random Schrodinger operators [J].
Gebert, Martin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (11)