Integrated density of states for ergodic random Schrodinger operators on manifolds

被引:13
作者
Peyerimhoff, N [1 ]
Veselic, I [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
基金
新加坡国家研究基金会;
关键词
integrated density of states; random Schrodinger operators; Riemannian manifolds with compact quotient; amenable groups; ergodic theorem;
D O I
10.1023/A:1016222913877
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Riemannian universal covering of a compact manifold M = X/Gamma and assume that Gamma is amenable. We show the existence of a (nonrandom) integrated density of states for an ergodic random family of Schrodinger operators on X.
引用
收藏
页码:117 / 135
页数:19
相关论文
共 50 条
[31]   Random Schrodinger operators and Anderson localization in aperiodic media [J].
Rojas-Molina, C. .
REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (01)
[32]   Lifshitz Tails for a Class of Schrodinger Operators with Random Breather-Type Potential [J].
Kirsch, Werner ;
Veselic, Ivan .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 94 (01) :27-39
[33]   Lipschitz-Continuity of the Integrated Density of States for Gaussian Random Potentials [J].
Ivan Veselić .
Letters in Mathematical Physics, 2011, 97 :25-27
[34]   On the Expansion of Resolvents and the Integrated Density of States for Poisson Distributed Schrödinger Operators [J].
Hasler, David ;
Koberstein, Jannis .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (05)
[35]   Holder continuity of the integrated density of states for quasi-periodic Jacobi operators [J].
Tao, Kai ;
Voda, Mircea .
JOURNAL OF SPECTRAL THEORY, 2017, 7 (02) :361-386
[36]   Absolutely continuous spectrum for random Schrodinger operators on the Bethe strip [J].
Klein, Abel ;
Sadel, Christian .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (01) :5-26
[37]   Integrated density of states for Poisson-Schrodinger perturbations of subordinate Brownian motions on the Sierpinski gasket [J].
Kaleta, Kamil ;
Pietruska-Paluba, Katarzyna .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (04) :1244-1281
[38]   The integrated density of states for the Wilson Dirac operator [J].
Bach, Volker ;
Kurig, Carolin .
RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2012, 20 (01) :1-24
[39]   Decorrelation estimates for random Schrodinger operators with non rank one perturbations [J].
Hislop, Peter D. ;
Krishna, Maddaly ;
Shirley, Christopher .
JOURNAL OF SPECTRAL THEORY, 2021, 11 (01) :63-89
[40]   LIFSHITZ TAILS FOR GENERALIZED ALLOY-TYPE RANDOM SCHRODINGER OPERATORS [J].
Klopp, Frederic ;
Nakamura, Shu .
ANALYSIS & PDE, 2010, 3 (04) :409-426