Integrated density of states for ergodic random Schrodinger operators on manifolds

被引:13
作者
Peyerimhoff, N [1 ]
Veselic, I [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
基金
新加坡国家研究基金会;
关键词
integrated density of states; random Schrodinger operators; Riemannian manifolds with compact quotient; amenable groups; ergodic theorem;
D O I
10.1023/A:1016222913877
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Riemannian universal covering of a compact manifold M = X/Gamma and assume that Gamma is amenable. We show the existence of a (nonrandom) integrated density of states for an ergodic random family of Schrodinger operators on X.
引用
收藏
页码:117 / 135
页数:19
相关论文
共 50 条
[21]   On conditional mean ergodic semigroups of random linear operators [J].
Xia Zhang .
Journal of Inequalities and Applications, 2012
[22]   Wegner estimate and the density of states of some indefinite alloy-type Schrodinger operators [J].
Veselic, I .
LETTERS IN MATHEMATICAL PHYSICS, 2002, 59 (03) :199-214
[23]   A Banach space-valued ergodic theorem and the uniform approximation of the integrated density of states [J].
Daniel Lenz ;
Fabian Schwarzenberger ;
Ivan Veselić .
Geometriae Dedicata, 2011, 150 :1-34
[24]   A Banach space-valued ergodic theorem and the uniform approximation of the integrated density of states [J].
Lenz, Daniel ;
Schwarzenberger, Fabian ;
Veselie, Ivan .
GEOMETRIAE DEDICATA, 2011, 150 (01) :1-34
[25]   Continuity of the Integrated Density of States on Random Length Metric Graphs [J].
Daniel Lenz ;
Norbert Peyerimhoff ;
Olaf Post ;
Ivan Veselić .
Mathematical Physics, Analysis and Geometry, 2009, 12 :219-254
[26]   Global continuity of the integrated density of states for random Landau Hamiltonians [J].
Combes, JM ;
Hislop, PD ;
Klopp, F ;
Raikov, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (7-8) :1187-1213
[27]   The modulus of continuity of Wegner estimates for random Schrodinger operators on metric graphs [J].
Gruber, Michael J. ;
Veselic, Ivan .
RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2008, 16 (01) :1-10
[28]   Lifshitz tails for random perturbations of periodic Schrodinger operators [J].
Klopp, F .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2002, 112 (01) :147-162
[29]   Ballistic behavior for random Schrodinger operators on the Bethe strip [J].
Klein, Abel ;
Sadel, Christian .
JOURNAL OF SPECTRAL THEORY, 2011, 1 (04) :409-442
[30]   Spectral statistics for random Schrodinger operators in the localized regime [J].
Germinet, Francois ;
Klopp, Frederic .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (09) :1967-2031