Lagrange Multiplier Rules for Weak Approximate Pareto Solutions of Constrained Vector Optimization Problems in Hilbert Spaces

被引:3
作者
Zheng, Xi Yin [1 ]
Li, Runxin [1 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Peoples R China
关键词
Vector optimization; Proximal normal cone; Coderivative; Weak-approximate-Pareto solution; OPTIMALITY CONDITIONS;
D O I
10.1007/s10957-012-0259-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the Hilbert space case, in terms of proximal normal cone and proximal coderivative, we establish a Lagrange multiplier rule for weak approximate Pareto solutions of constrained vector optimization problems. In this case, our Lagrange multiplier rule improves the main result on vector optimization in Zheng and Ng (SIAM J. Optim. 21: 886-911, 2011). We also introduce a notion of a fuzzy proximal Lagrange point and prove that each Pareto (or weak Pareto) solution is a fuzzy proximal Lagrange point.
引用
收藏
页码:665 / 679
页数:15
相关论文
共 24 条
[1]  
Arrow K.J., 1953, CONTRIBUTIONS THEORY, V2, P87
[2]   Relative Pareto minimizers for multiobjective problems: existence and optimality conditions [J].
Bao, Truong Q. ;
Mordukhovich, Boris S. .
MATHEMATICAL PROGRAMMING, 2010, 122 (02) :301-347
[3]   Outcome space partition of the weight set in multiobjective linear programming [J].
Benson, HP ;
Sun, E .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 105 (01) :17-36
[4]   A SMOOTH VARIATIONAL PRINCIPLE WITH APPLICATIONS TO SUBDIFFERENTIABILITY AND TO DIFFERENTIABILITY OF CONVEX-FUNCTIONS [J].
BORWEIN, JM ;
PREISS, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 303 (02) :517-527
[5]  
Clarke F. H., 1998, NONSMOOTH ANAL CONTR, V178, DOI 10.1007/b97650
[6]   Ideal, weakly efficient solutions for vector optimization problems [J].
Flores-Bazán, F .
MATHEMATICAL PROGRAMMING, 2002, 93 (03) :453-475
[7]  
Gopfert A., 2003, Variational Methods in Partially Ordered Spaces
[8]  
Götz A, 2000, SIAM J OPTIMIZ, V10, P331
[9]   Unified approach and optimality conditions for approximate solutions of vector optimization problems [J].
Gutierrez, Cesar ;
Jimenez, Bienvenido ;
Novo, Vicente .
SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (03) :688-710
[10]  
HELBIG S, 1994, OR SPEKTRUM, V16, P179, DOI 10.1007/BF01720705