On the optimality of image processing pipeline

被引:0
|
作者
Singh, S [1 ]
Singh, M [1 ]
机构
[1] Univ Exeter, Dept Comp Sci, PANN Res, Exeter EX4 4PT, Devon, England
关键词
scene analysis; image segmentation; texture features; MINERVA;
D O I
10.1016/j.patcog.2003.08.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The optimisation of image processing steps such as segmentation and feature extraction individually in an application does not yield an optimal pipeline. In this paper we demonstrate how the use of different image segmentation algorithms directly impacts upon the quality of texture measures extracted from segmented regions and final classification ability. The difference between the best and the worst possible performances by choosing different algorithms is found to be significant. We then develop the methodology for determining the optimal pipeline for scene analysis and show our experimental results on the publicly available benchmark "MINERVA". (C) 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:707 / 724
页数:18
相关论文
共 50 条
  • [1] Color image processing pipeline
    Ramanath, R
    Snyder, WE
    Yoo, YJ
    Drew, MS
    IEEE SIGNAL PROCESSING MAGAZINE, 2005, 22 (01) : 34 - 43
  • [2] Learning the Image Processing Pipeline
    Jiang, Haomiao
    Tian, Qiyuan
    Farrell, Joyce
    Wandell, Brian A.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (10) : 5032 - 5042
  • [3] A pipeline tool for CCD image processing
    Bell, JF
    Young, PJ
    Roberts, WH
    Sebo, KM
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS VIII, 1999, 172 : 183 - 186
  • [4] Parallel Image Processing Based on Pipeline
    Xiao, Zhifeng
    Zhang, Binglong
    2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,
  • [5] NICRED: A NICMOS image processing pipeline
    Magee, Daniel K.
    Bouwens, Rychard J.
    Illingworth, Garth D.
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XVI, 2007, 376 : 261 - +
  • [6] A Novel Stereoscopic Image Processing Pipeline
    Seo, Ja-Won
    Lee, Hae-Sun
    Lee, Jong-Hyub
    Yim, Sungjun
    Park, Sangbae
    2013 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2013, : 260 - +
  • [7] A Color Image Processing Pipeline for Digital Microscope
    Liu, Yan
    Liu, Peng
    Zhuang, Zhenfeng
    Chen, Enguo
    Yu, Feihong
    6TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTOELECTRONIC MATERIALS AND DEVICES FOR SENSING, IMAGING, AND SOLAR ENERGY, 2012, 8419
  • [8] An Image Processing Pipeline using Coupled Oscillators
    Carpenter, John A.
    Fang, Yan
    Gnegy, Chet N.
    Chiarulli, Donald M.
    Levitan, Steven P.
    2014 14TH INTERNATIONAL WORKSHOP ON CELLULAR NANOSCALE NETWORKS AND THEIR APPLICATIONS (CNNA), 2014,
  • [9] The Dark Energy Survey Image Processing Pipeline
    Morganson, E.
    Gruendl, R. A.
    Menanteau, F.
    Kind, M. Carrasco
    Chen, Y. -C.
    Daues, G.
    Drlica-Wagner, A.
    Friedel, D. N.
    Gower, M.
    Johnson, M. W. G.
    Johnson, M. D.
    Kessler, R.
    Paz-Chinchon, F.
    Petravick, D.
    Pond, C.
    Yanny, B.
    Allam, S.
    Armstrong, R.
    Barkhouse, W.
    Bechtol, K.
    Benoit-Levy, A.
    Bernstein, G. M.
    Bertin, E.
    Buckley-Geer, E.
    Covarrubias, R.
    Desai, S.
    Diehl, H. T.
    Goldstein, D. A.
    Gruen, D.
    Li, T. S.
    Lin, H.
    Marriner, J.
    Mohr, J. J.
    Neilsen, E.
    Ngeow, C. -C.
    Paech, K.
    Rykoff, E. S.
    Sako, M.
    Sevilla-Noarbe, I.
    Sheldon, E.
    Sobreira, F.
    Tucker, D. L.
    Wester, W.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2018, 130 (989)
  • [10] Optoelectronic pipeline architecture for morphological image processing
    Michael, N
    Arrathoon, R
    APPLIED OPTICS, 1997, 36 (08): : 1718 - 1725