Universal Digital Controller for Boost CCM Power Factor Correction Stages Based on Current Rebuilding Concept

被引:46
作者
Lopez, Victor M. [1 ]
Azcondo, Francisco J. [1 ]
de Castro, Angel [2 ]
Zane, Regan [3 ]
机构
[1] Univ Cantabria, E-39005 Santander, Spain
[2] Univ Autonoma Madrid, E-28049 Madrid, Spain
[3] Utah State Univ, Dept Elect Commun Engn, Logan, UT 84322 USA
关键词
Boost converter; continuous conduction mode; digital control; digital error compensation; power factor correction; sensorless controller; CURRENT-MODE CONTROL; DC-DC CONVERTERS; CURRENT DISTORTION; CONTROL STRATEGY; CURRENT SENSOR; PFC RECTIFIER; IMPLEMENTATION; SUPPLIES; SMR;
D O I
10.1109/TPEL.2013.2280077
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Continuous conduction mode power factor correction (PFC) without input current measurement is a step forward with respect to previously proposed PFC digital controllers. Inductor volt-second (nu s(L)) measurement in each switching period enables digital estimation of the input current; however, an accurate compensation of the small errors in the measured nu s(L) is required for the estimation to match the actual current. Otherwise, they are accumulated every switching period over the half-line cycle, leading to an appreciable current distortion. A nu s(L) estimation method is proposed, measuring the input (nu(g)) and output voltage (nu(o)). Discontinuous conduction mode (DCM) occurs near input line zero crossings and is detected by measuring the drain-to-source MOS-FET voltage nu(ds). Parasitic elements cause a small difference between the estimated voltage across the inductor based on input and output voltage measurements and the actual one, which must be taken into account to estimate the input current in the proposed sensorless PFC digital controller. This paper analyzes the current estimation error caused by errors in the ON-time estimation, voltage measurements, and the parasitic elements. A new digital feedback control with high resolution is also proposed. It cancels the difference between DCM operation time of the real input current, (T-DCM(g)) and the estimated DCM time (T-DCM(reb)). Therefore, the current estimation is calibrated using digital signals during operation in DCM. A fast feedforward coarse time error compensation is carried out with the measured delay of the drive signal, and a fine compensation is achieved with a feedback loop that matches the estimated and real DCM time. The digital controller can be used in universal applications due to the ability of the DCM time feedback loop to autotune based on the operation conditions (power level, input voltage, output voltage...), which improves the operation range in comparison with previous solutions. Experimental results are shown for a 1-kW boost PFC converter over a wide power and voltage range.
引用
收藏
页码:3818 / 3829
页数:12
相关论文
共 29 条