Impacts of SO2, Relative Humidity, and Seed Acidity on Secondary Organic Aerosol Formation in the Ozonolysis of Butyl Vinyl Ether

被引:24
作者
Zhang, Peng [1 ,3 ]
Chen, Tianzeng [1 ,3 ]
Liu, Jun [1 ,3 ]
Liu, Changgeng [1 ]
Ma, Jinzhu [1 ,2 ,3 ]
Ma, Qingxin [1 ,2 ,3 ]
Chu, Biwu [1 ,2 ,3 ]
He, Hong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100085, Peoples R China
[2] Chinese Acad Sci, Ctr Excellence Reg Atmospher Environm, Inst Urban Environm, Xiamen 361021, Fujian, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
GAS-PHASE REACTIONS; STATISTICAL OXIDATION MODEL; CRIEGEE INTERMEDIATE; PARTICLE FORMATION; CHEMICAL-COMPOSITION; SULFURIC-ACID; NO3; RADICALS; MONOTERPENE OZONOLYSIS; HIGH-RESOLUTION; AIR-QUALITY;
D O I
10.1021/acs.est.9b02702
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Alkyl vinyl ethers are widely used as fuel additives. Despite this, their atmospheric chemistry and secondary organic aerosol (SOA) formation potentials are still not well-known under complex pollution conditions. In this work, we examined the impact of SO2, relative humidity (RH), and particle acidity on the formation and oxidation state (OSc) of SOA from butyl vinyl ether (BVE) ozonolysis. Increasing SO2 concentration produced a notable promotion of SOA formation and OSc due to the significant increase in H2SO4 particles and formation of more highly oxidized components. Increased RH in the presence of SO2 appeared to promote, suppress, and dominate the formation and OSc of SOA in the dry range (1-10%), low RH range (10-42%), and moderate RH range (42-64%), respectively. This highlights the importance of competition between H2O and SO2 in reacting with the stabilized Criegee intermediate in BVE ozonolysis at ambient RH. Increased particle acidity mainly contributed to the change in chemical composition of BVE-dominated SOA but not to SOA formation. The results presented here extend previous analysis of BVE-derived SOA and further aid our understanding of SOA formation potential of BVE ozonolysis under highly complex pollution conditions.
引用
收藏
页码:8845 / 8853
页数:9
相关论文
共 71 条
[1]  
[Anonymous], 2016, ATMOSPHERIC CHEM PHY
[2]   Retrieval of near-surface sulfur dioxide (SO2) concentrations at a global scale using IASI satellite observations [J].
Bauduin, Sophie ;
Clarisse, Lieven ;
Hadji-Lazaro, Juliette ;
Theys, Nicolas ;
Clerbaux, Cathy ;
Coheur, Pierre-Francois .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (02) :721-740
[3]   Laboratory study on new particle formation from the reaction OH + SO2: influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process [J].
Berndt, T. ;
Stratmann, F. ;
Sipilae, M. ;
Vanhanen, J. ;
Petaja, T. ;
Mikkila, J. ;
Gruener, A. ;
Spindler, G. ;
Mauldin, R. Lee, III ;
Curtius, J. ;
Kulmala, M. ;
Heintzenberg, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (15) :7101-7116
[4]   Competing atmospheric reactions of CH2OO with SO2 and water vapour [J].
Berndt, Torsten ;
Voigtlaender, Jens ;
Stratmann, Frank ;
Junninen, Heikki ;
Mauldin, Roy L., III ;
Sipila, Mikko ;
Kulmala, Markku ;
Herrmann, Hartmut .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (36) :19130-19136
[5]   H2SO4 formation from the gas-phase reaction of stabilized Criegee Intermediates with SO2: Influence of water vapour content and temperature [J].
Berndt, Torsten ;
Jokinen, Tuija ;
Sipila, Mikko ;
Mauldin, Roy L., III ;
Herrmann, Hartmut ;
Stratmann, Frank ;
Junninen, Heikki ;
Kulmala, Markku .
ATMOSPHERIC ENVIRONMENT, 2014, 89 :603-612
[6]   Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer [J].
Canagaratna, M. R. ;
Jayne, J. T. ;
Jimenez, J. L. ;
Allan, J. D. ;
Alfarra, M. R. ;
Zhang, Q. ;
Onasch, T. B. ;
Drewnick, F. ;
Coe, H. ;
Middlebrook, A. ;
Delia, A. ;
Williams, L. R. ;
Trimborn, A. M. ;
Northway, M. J. ;
DeCarlo, P. F. ;
Kolb, C. E. ;
Davidovits, P. ;
Worsnop, D. R. .
MASS SPECTROMETRY REVIEWS, 2007, 26 (02) :185-222
[7]   Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications [J].
Canagaratna, M. R. ;
Jimenez, J. L. ;
Kroll, J. H. ;
Chen, Q. ;
Kessler, S. H. ;
Massoli, P. ;
Hildebrandt Ruiz, L. ;
Fortner, E. ;
Williams, L. R. ;
Wilson, K. R. ;
Surratt, J. D. ;
Donahue, N. M. ;
Jayne, J. T. ;
Worsnop, D. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (01) :253-272
[8]   Application of the Statistical Oxidation Model (SOM) to Secondary Organic Aerosol formation from photooxidation of C12 alkanes [J].
Cappa, C. D. ;
Zhang, X. ;
Loza, C. L. ;
Craven, J. S. ;
Yee, L. D. ;
Seinfeld, J. H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (03) :1591-1606
[9]   Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model - Part 2: Assessing the influence of vapor wall losses [J].
Cappa, Christopher D. ;
Jathar, Shantanu H. ;
Kleeman, Michael J. ;
Docherty, Kenneth S. ;
Jimenez, Jose L. ;
Seinfeld, John H. ;
Wexler, Anthony S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (05) :3041-3059
[10]   Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor [J].
Chao, Wen ;
Hsieh, Jun-Ting ;
Chang, Chun-Hung ;
Lin, Jim Jr-Min .
SCIENCE, 2015, 347 (6223) :751-754