An interacting fermion-antifermion pair in the spacetime background generated by static cosmic string

被引:51
作者
Guvendi, Abdullah [1 ]
Sucu, Yusuf [2 ]
机构
[1] Kutahya Hlth Sci Univ, Simav Vocat Sch Hlth Serv, Med Imaging Tech, TR-43500 Kutahya, Turkey
[2] Akdeniz Univ, Dept Phys, Fac Sci, TR-07058 Antalya, Turkey
关键词
Cosmic string; Positronium; Fermion-antifermion systems; Two-body Dirac equation; ONE-ELECTRON ATOM; GRAVITATIONAL-FIELD; QUANTUM ELECTRODYNAMICS; POSITRONIUM; EQUATIONS; RADIATION; FORCE; PHASE; PROBE; DECAY;
D O I
10.1016/j.physletb.2020.135960
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider a general relativistic fermion antifermion pair that they interact via an attractive Coulomb type interparticle interaction potential in the 2 + 1 dimensional spacetime background spanned by cosmic string. By performing an exact solution of the corresponding fully-covariant two body Dirac Coulomb type equation we obtain an energy spectrum that depends on angular deficit parameter of the static cosmic string spacetime background for such a composite system. We arrive that the influence of cosmic string spacetime topology on the binding energy of Positronium-like atoms can be seen in all order of the coupling strength constant, even in the well-known non-relativistic binding energy term (proportional to alpha(2)(c)). We obtain that the angular deficit of the static cosmic string spacetime background causes a screening effect. For a predicted value of angular deficit parameter, alpha similar to 1 - 10(-6), we apply the obtained result to an ortho-positronium, which is an unstable atom formed by an electron and its antimatter counterpart a positron, and then we determine the shift in the ground state binding energy level as 27, 2 mu eV. We also arrive that, in principle, the shift in ground state binding energy of ortho-positronium can be measured even for alpha similar to 1 - 10(-11) value with current techniques in use today. Moreover, this also gives us an opportunity to determine the altered total annihilation energy transmitted by the annihilation photons. The yields also impose that the total lifetime of an ortho-positronium can be changed by the topological feature of static cosmic string spacetime background. In principle, we show that an ortho-positronium system has a potential to prove the existence of such a spacetime background. (C) 2020 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:10
相关论文
共 95 条
[21]   The effect of retardation on the interaction of two electrons [J].
Breit, G .
PHYSICAL REVIEW, 1929, 34 (02) :375-375
[22]   Probing the scale of grand unification with gravitational waves [J].
Buchmuller, Wilfried ;
Domcke, Valerie ;
Murayama, Hitoshi ;
Schmitz, Kai .
PHYSICS LETTERS B, 2020, 809
[23]   Transition processes of a static multilevel atom in the cosmic string spacetime with a conducting plane boundary [J].
Cai, Huabing ;
Ren, Zhongzhou .
SCIENTIFIC REPORTS, 2018, 8
[24]   COSMOLOGICAL CONSTRAINTS ON COSMIC-STRING GRAVITATIONAL-RADIATION [J].
CALDWELL, RR ;
ALLEN, B .
PHYSICAL REVIEW D, 1992, 45 (10) :3447-3468
[25]   Cosmological backgrounds of gravitational waves [J].
Caprini, Chiara ;
Figueroa, Daniel G. .
CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (16)
[26]   Dirac oscillator interacting with a topological defect [J].
Carvalho, J. ;
Furtado, C. ;
Moraes, F. .
PHYSICAL REVIEW A, 2011, 84 (03)
[27]   Positronium Hyperfine Interval Measured via Saturated Absorption Spectroscopy [J].
Cassidy, D. B. ;
Hisakado, T. H. ;
Tom, H. W. K. ;
Mills, A. P., Jr. .
PHYSICAL REVIEW LETTERS, 2012, 109 (07)
[28]   Experimental progress in positronium laser physics [J].
Cassidy, David B. .
EUROPEAN PHYSICAL JOURNAL D, 2018, 72 (03)
[29]   ROTATING STRING SOURCES IN 3-DIMENSIONAL GRAVITY [J].
CLEMENT, G .
ANNALS OF PHYSICS, 1990, 201 (02) :241-257
[30]  
De Lorenci VA, 1999, CLASSICAL QUANT GRAV, V16, P3047, DOI 10.1088/0264-9381/16/10/302