Unicyclic graphs with exactly two main eigenvalues

被引:37
作者
Hou, Yaoping [1 ]
Tian, Feng
机构
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
[2] Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
spectra of a graph; main eigenvalues; unicyclic graphs; harmonic graphs; 2-walk linear graphs;
D O I
10.1016/j.aml.2005.11.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An eigenvalue of a graph G is called a main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero, and it is well known that a graph has exactly one main eigenvalue if and only if it is regular. In this work, all connected unicyclic graphs with exactly two main eigenvalues are determined. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1143 / 1147
页数:5
相关论文
共 9 条
[1]   Harmonic graphs with small number of cycles [J].
Borovicanin, B ;
Grünewald, S ;
Gutman, I ;
Petrovic, M .
DISCRETE MATHEMATICS, 2003, 265 (1-3) :31-44
[2]   A TABLE OF CONNECTED GRAPHS ON 6 VERTICES [J].
CVETKOVIC, D ;
PETRIC, M .
DISCRETE MATHEMATICS, 1984, 50 (01) :37-49
[3]  
CVETKOVIC D, 1997, EIGENSPACES GRAPHS
[4]   Semiharmonic graphs with fixed cyclomatic number [J].
Dress, A ;
Grünewald, S ;
Stevanovic, D .
APPLIED MATHEMATICS LETTERS, 2004, 17 (06) :623-629
[5]   The number of walks in a graph [J].
Dress, A ;
Gutman, I .
APPLIED MATHEMATICS LETTERS, 2003, 16 (05) :797-801
[6]  
DRESS A, 2005, APPL MATH LETT, V18, P1128
[7]   Harmonic trees [J].
Grünewald, S .
APPLIED MATHEMATICS LETTERS, 2002, 15 (08) :1001-1004
[8]   Some results on graph spectra [J].
Hagos, EA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 356 (1-3) :103-111
[9]  
[侯耀平 Hou Yaoping], 2005, [湖南师范大学自然科学学报, Journal of Natural Science of Hunan Normal University], V28, P1